Aug 2023, Volume 14 Issue 8
    

  • Select all
  • RECOLLECTION
    Huan Liu, Jianliang Huang, Wanying Gao, Hao Cheng
  • COMMENTARY
    Jiewei Zhu, Vasily Giannakeas, Steven A. Narod, Mohammad R. Akbari
  • REVIEW
    Juntao Fang, Alain de Bruin, Andreas Villunger, Raymond Schiffelers, Zhiyong Lei, Joost P.G. Sluijter

    Polyploid cells, which contain more than one set of chromosome pairs, are very common in nature. Polyploidy can provide cells with several potential benefits over their diploid counterparts, including an increase in cell size, contributing to organ growth and tissue homeostasis, and improving cellular robustness via increased tolerance to genomic stress and apoptotic signals. Here, we focus on why polyploidy in the cell occurs and which stress responses and molecular signals trigger cells to become polyploid. Moreover, we discuss its crucial roles in cell growth and tissue regeneration in the heart, liver, and other tissues.

  • RESEARCH ARTICLE
    Yue Gao, Chun-Jie Liu, Hua-Yi Li, Xiao-Ming Xiong, Gui-Ling Li, Sjors G.J.G. In ”t Veld, Guang-Yao Cai, Gui-Yan Xie, Shao-Qing Zeng, Yuan Wu, Jian-Hua Chi, Jia-Hao Liu, Qiong Zhang, Xiao-Fei Jiao, Lin-Li Shi, Wan-Rong Lu, Wei-Guo Lv, Xing-Sheng Yang, Jurgen M.J. Piek, Cornelis D de Kroon, C.A.R. Lok, Anna Supernat, Sylwia Łapińska-Szumczyk, Anna Łojkowska, Anna J Żaczek, Jacek Jassem, Bakhos A. Tannous, Nik Sol, Edward Post, Myron G. Best, Bei-Hua Kong, Xing Xie, Ding Ma, Thomas Wurdinger, An-Yuan Guo, Qing-Lei Gao

    Platelets are reprogrammed by cancer via a process called education, which favors cancer development. The transcriptional profile of tumor-educated platelets (TEPs) is skewed and therefore practicable for cancer detection. This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n = 3; Netherlands, n = 5; Poland, n = 1) between September 2016 and May 2019. The main out-comes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889–0.948), 0.923 (0.855–0.990), 0.918 (0.872–0.963), and 0.887 (0.813–0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889–0.955) in the combined validation cohort; 0.955 (0.912–0.997) in VC1; 0.939 (0.901–0.977) in VC2; 0.917 (0.824–1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, and early-stage ovarian cancer. However, these observations warrant prospective validations in a larger population before clinical utilities.

  • RESEARCH ARTICLE
    Liangwen Zhong, Miriam Gordillo, Xingyi Wang, Yiren Qin, Yuanyuan Huang, Alexey Soshnev, Ritu Kumar, Gouri Nanjangud, Daylon James, C. David Allis, Todd Evans, Bryce Carey, Duancheng Wen

    While Mek1/2 and Gsk3β inhibition (“2i”) supports the maintenance of murine embryonic stem cells (ESCs) in a homogenous naïve state, prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impairs developmental potential. Additionally, 2i fails to support derivation and culture of fully potent female ESCs. Here we find that mouse ESCs cultured in 2i/LIF supplemented with lipid-rich albumin (AlbuMAX) undergo pluripotency transition yet maintain genomic stability and full potency over long-term culture. Mechanistically, lipids in AlbuMAX impact intracellular metabolism including nucleotide biosynthesis, lipid biogenesis, and TCA cycle intermediates, with enhanced expression of DNMT3s that prevent DNA hypomethylation. Lipids induce a formative-like pluripotent state through direct stimulation of Erk2 phosphorylation, which also alleviates X chromosome loss in female ESCs. Importantly, both male and female “all-ESC” mice can be generated from de novo derived ESCs using AlbuMAX-based media. Our findings underscore the importance of lipids to pluripotency and link nutrient cues to genome integrity in early development.

  • RESEARCH ARTICLE
    Min Wei, Yanping Sun, Shouzhen Li, Yunuo Chen, Longfei Li, Minghao Fang, Ronghua Shi, Dali Tong, Jutao Chen, Yuqian Ma, Kun Qu, Mei Zhang, Tian Xue

    Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.

  • LETTER
    Chun-Jie Liu, Hua-Yi Li, Yue Gao, Gui-Yan Xie, Jian-Hua Chi, Gui-Ling Li, Shao-Qing Zeng, Xiao-Ming Xiong, Jia-Hao Liu, Lin-Li Shi, Xiong Li, Xiao-Dong Cheng, Kun Song, Ding Ma, An-Yuan Guo, Qing-Lei Gao
  • LETTER
    Lan-Zhu Li, Kuan Yang, Yaobin Jing, Yanling Fan, Xiaoyu Jiang, Si Wang, Guang-Hui Liu, Jing Qu, Shuai Ma, Weiqi Zhang