CRISPR-based screening identifies XPO7 as a positive regulator of senescence

Lan-Zhu Li, Kuan Yang, Yaobin Jing, Yanling Fan, Xiaoyu Jiang, Si Wang, Guang-Hui Liu, Jing Qu, Shuai Ma, Weiqi Zhang

PDF(11173 KB)
PDF(11173 KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (8) : 623-628. DOI: 10.1093/procel/pwad012
LETTER
LETTER

CRISPR-based screening identifies XPO7 as a positive regulator of senescence

Author information +
History +

Cite this article

Download citation ▾
Lan-Zhu Li, Kuan Yang, Yaobin Jing, Yanling Fan, Xiaoyu Jiang, Si Wang, Guang-Hui Liu, Jing Qu, Shuai Ma, Weiqi Zhang. CRISPR-based screening identifies XPO7 as a positive regulator of senescence. Protein Cell, 2023, 14(8): 623‒628 https://doi.org/10.1093/procel/pwad012

References

[1]
Aksu M, Pleiner T, Karaca S et al. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J Cell Biol 2018;217:2329–2340.
CrossRef Google scholar
[2]
Cai Y, Ji Z, Wang S et al. Genetic enhancement: an avenue to combat aging-related diseases. Life Med 2022a;1:307–318.
CrossRef Google scholar
[3]
Cai Y, Song W, Li J et al. The landscape of aging. Sci China Life Sci 2022b;65:2354–2454.
CrossRef Google scholar
[4]
Colussi C, Mozzetta C, Gurtner A et al. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci USA 2008;105:19183–19187.
CrossRef Google scholar
[5]
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear pore complexes and nucleocytoplasmic transport: from structure to function to disease. Int Rev Cell Mol Biol 2015;320:171–233.
CrossRef Google scholar
[6]
Hattangadi SM, Martinez-Morilla S, Patterson HC et al. Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood 2014;124:1931–1940.
CrossRef Google scholar
[7]
Innes AJ, Sun B, Wagner V et al. XPO7 is a tumor suppressor regulating p21(CIP1)-dependent senescence. Genes Dev 2021;35:379–391.
CrossRef Google scholar
[8]
Lopez-Otin C, Blasco MA, Partridge L et al. Hallmarks of aging: an expanding universe. Cell 2023;186:243–278.
CrossRef Google scholar
[9]
Sun Y, Li Q, Kirkland JL. Targeting senescent cells for a healthier longevity: the roadmap for an era of global aging. Life Med 2022;1:103–119.
CrossRef Google scholar
[10]
Warnon C, Bouhjar K, Ninane N et al. HDAC2 and 7 down-regulation induces senescence in dermal fibroblasts. Aging (Albany NY) 2021;13:17978–18005.
CrossRef Google scholar
[11]
Wu Z, Zhang W, Song M et al. Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 2018;9:333–350.
CrossRef Google scholar
[12]
Yang J, Cai N, Yi F et al. Gating pluripotency via nuclear pores. Trends Mol Med 2014;20:1–7.
CrossRef Google scholar
[13]
Zhang W, Qu J, Liu GH et al. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 2020;21:137–150.
CrossRef Google scholar
[14]
Zhao D, Chen S. Failures at every level: breakdown of the epigenetic machinery of aging. Life Med 2022;1:81–83.
CrossRef Google scholar
[15]
Zhou Q, Wang Y, Yang L et al. Histone deacetylase inhibitors blocked activation and caused senescence of corneal stromal cells. Mol Vis 2008;14:2556–2565.

RIGHTS & PERMISSIONS

2023 The Author(s) 2023. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(11173 KB)

Accesses

Citations

Detail

Sections
Recommended

/