Inflammasomes are multiprotein complexes that serve as a platform for caspase-1 activation and interleukin-1β (IL-1β) maturation as well as pyroptosis. Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied. NLRP3 inflammasome is triggered by a variety of stimuli, including infection, tissue damage and metabolic dysregulation, and then activated through an integrated cellular signal. Many regulatory mechanisms have been identifi ed to attenuate NLRP3 inflammasome signaling at multiple steps. Here, we review the developments in the negative regulation of NLRP3 inflammasome that protect host from inflammatory damage.
Pannexin-1 (Panx1) forms nonselective large channel in cell plasma membrane and has been shown to be associated with NLRP3 inflammasome activation, ATP release and phagocytes recruitment. In the current study, by manipulation of Panx1 expression in human myeloid cells and application of Panx1 defi cient mice, we failed to fi nd a correlation between Panx1 and NLRP3 inflammasome activation, although an interaction between these two proteins was evident. However, in thioglycollate induced peritonitis, Panx1 defi cient mice showed much more phagocytes infiltration. Further analyses showed that mice defi cient for Panx1 exhibited enlarged F4/80lowGr1-Ly6C-cell population in the peritonea. Our study thus reveals an important role for Panx1 in regulation of peritoneal cell population and peritonitis development.
Angiogenesis, the expansion of preexisting blood vessels, is a complex process required for tumor growth and metastasis. Although current antiangiogenic strategies have shown promising results in several cancer types, identifi-cation of additional antiangiogenic targets is required to improve the therapeutic response. Herein, we show that the microtubule-binding protein CLIP-170 (cytoplasmic linker protein of 170 kDa) is highly expressed in breast tumor samples and correlates positively with blood vessel density. Depletion of CLIP-170 significantly impaired vascular endothelial tube formation and sprouting
The activation and deactivation of Ca2+- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved F?rster resonance energy transfer (FRET), we determined the occurrence of Ca2+-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca2+ concentrations ([Ca2+]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca2+]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.
Genetically encoded Ca2+ indicators (GECI) are important for the measurement of Ca2+
17β-estradiol (E2) treatment of cells results in an upregulation of SIRT1 and a down-regulation of PPARγ. The decrease in PPARγ expression is mediated by increased degradation of PPARγ. Here we report that PPARγ is ubiquitinated by HECT E3 ubiquitin ligase NEDD4-1 and degraded, along with PPARγ, in response to E2 stimulation. The PPARγ interacts with ubiquitin ligase NEDD4-1 through a conserved PPXY-WW binding motif. The WW3 domain in NEDD4-1 is critical for binding to PPARγ. NEDD4-1 overexpression leads to PPARγ ubiquitination and reduced expression of PPARγ. Conversely, knockdown of NEDD4-1 by specific siRNAs abolishes PPARγ ubiquitination. These data indicate that NEDD4-1 is the E3 ubiquitin ligase responsible for PPARγ ubiquitination. Here, we show that NEDD4-1 delays cellular senescence by degrading PPARγ expression. Taken together, our data show that E2 could upregulate SIRT1 expression via promoting the PPARγ ubiquitination-proteasome degradation pathway to delay the process of cell senescence.