Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase

Wenjuan Duan1, Juefei Zhou1,2, Wei Li3, Teng Zhou1,4, Qianqian Chen1,4, Fuyu Yang1(), Taotao Wei1()

PDF(1102 KB)
PDF(1102 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (4) : 286-298. DOI: 10.1007/s13238-013-2116-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase

  • Wenjuan Duan1, Juefei Zhou1,2, Wei Li3, Teng Zhou1,4, Qianqian Chen1,4, Fuyu Yang1(), Taotao Wei1()
Author information +
History +

Abstract

The activation and deactivation of Ca2+- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved F?rster resonance energy transfer (FRET), we determined the occurrence of Ca2+-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca2+ concentrations ([Ca2+]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca2+]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

Keywords

plasma membrane calcium ATPase / neuronal nitric oxide synthase / calcium / nitric oxide / lipid raft / F?rster resonance energy transfer

Cite this article

Download citation ▾
Wenjuan Duan, Juefei Zhou, Wei Li, Teng Zhou, Qianqian Chen, Fuyu Yang, Taotao Wei. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase. Prot Cell, 2013, 4(4): 286‒298 https://doi.org/10.1007/s13238-013-2116-z

References

[1] Adamo, H.P., Filoteo, A.G., Enyedi, A., and Penniston, J.T. (1995). Mu-tants in the putative nucleotide-binding region of the plasma membrane Ca(2+)-pump. A reduction in activity due to slow dephosphorylation. J Biol Chem 270, 30111-30114 .10.1074/jbc.270.50.30111
[2] Alderton, W.K., Cooper, C.E., and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem J 357, 593-615 .10.1042/0264-6021:3570593
[3] Brenman, J.E., Chao, D.S., Gee, S.H., McGee, A.W., Craven, S.E., Santillano, D.R., Wu, Z., Huang, F., Xia, H., Peters, M.F., . (1996). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84, 757-767 .10.1016/S0092-8674(00)81053-3
[4] Brini, M. (2009). Plasma membrane Ca(2+)-ATPase: from a housekeeping function to a versatile signaling role. Pflugers Arch 457, 657-664 .10.1007/s00424-008-0505-6
[5] Brini, M., and Carafoli, E. (2009). Calcium pumps in health and disease. Physiol Rev 89, 1341-1378 .10.1152/physrev.00032.2008
[6] Brown, D.A., and London, E. (1998). Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14, 111-136 .10.1146/annurev.cellbio.14.1.111
[7] Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D.A., and Stella, A.M. (2007). Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8, 766-775 .10.1038/nrn2214
[8] Carafoli, E. (2003). The calcium-signalling saga: tap water and protein crystals. Nat Rev Mol Cell Biol 4, 326-332 .10.1038/nrm1073
[9] Cartwright, E.J., Oceandy, D., and Neyses, L. (2009). Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch 457, 665-671 .10.1007/s00424-008-0455-z
[10] Ciruela, F. (2008). Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19, 338-343 .10.1016/j.copbio.2008.06.003
[11] Corradi, G.R., and Adamo, H.P. (2007). Intramolecular fluorescence resonance energy transfer between fused autofluorescent proteins reveals rearrangements of the N- and C-terminal segments of the plasma membrane Ca2+ pump involved in the activation. J Biol Chem 282, 35440-35448 .10.1074/jbc.M703377200
[12] Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R., and Greenberg, M.E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661-665 .10.1126/science.275.5300.661
[13] Falchetto, R., Vorherr, T., Brunner, J., and Carafoli, E. (1991). The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem 266, 2930-2936 .
[14] Falchetto, R., Vorherr, T., and Carafoli, E. (1992). The calmodulinbinding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1, 1613-1621 .10.1002/pro.5560011209
[15] Fujimoto, T. (1993). Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120, 1147-1157 .10.1083/jcb.120.5.1147
[16] Guerini, D. (1998). The significance of the isoforms of plasma membrane calcium ATPase. Cell Tissue Res 292, 191-197 .10.1007/s004410051050
[17] Guix, F.X., Uribesalgo, I., Coma, M., and Munoz, F.J. (2005). The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76, 126-152 .10.1016/j.pneurobio.2005.06.001
[18] Hammes, A., Oberdorf-Maass, S., Rother, T., Nething, K., Gollnick, F., Linz, K.W., Meyer, R., Hu, K., Han, H., Gaudron, P., . (1998). Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circ Res 83, 877-888 .10.1161/01.RES.83.9.877
[19] Holton, M., Mohamed, T.M., Oceandy, D., Wang, W., Lamas, S., Emerson, M., Neyses, L., and Armesilla, A.L. (2010). Endothelial nitric oxide synthase activity is inhibited by the plasma membrane calcium ATPase in human endothelial cells. Cardiovasc Res 87, 440-448 .10.1093/cvr/cvq077
[20] Jiang, L., Fernandes, D., Mehta, N., Bean, J.L., Michaelis, M.L., and Zaidi, A. (2007). Partitioning of the plasma membrane Ca2+-ATPase into lipid rafts in primary neurons: effects of cholesterol depletion. J Neurochem 102, 378-388 .10.1111/j.1471-4159.2007.04480.x
[21] Kim, E., DeMarco, S.J., Marfatia, S.M., Chishti, A.H., Sheng, M., and Strehler, E.E. (1998). Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains. J Biol Chem 273, 1591-1595 .10.1074/jbc.273.3.1591
[22] Kim, W.K., Choi, Y.B., Rayudu, P.V., Das, P., Asaad, W., Arnelle, D.R., Stamler, J.S., and Lipton, S.A. (1999). Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO. Neuron 24, 461-469 .10.1016/S0896-6273(00)80859-4
[23] Kobe, B., and Kemp, B.E. (1999). Active site-directed protein regulation. Nature 402, 373-376 .10.1038/46478
[24] Kojima, H., Nakatsubo, N., Kikuchi, K., Urano, Y., Higuchi, T., Tanaka, J., Kudo, Y., and Nagano, T. (1998). Direct evidence of NO production in rat hippocampus and cortex using a new fluorescent indicator: DAF-2 DA. Neuroreport 9, 3345-3348 .10.1097/00001756-199810260-00001
[25] Kruger, W.A., Yun, C.C., Monteith, G.R., and Poronnik, P. (2009). Muscarinic-induced recruitment of plasma membrane Ca2+-ATPase involves PSD-95/Dlg/Zo-1-mediated interactions. J Biol Chem 284, 1820-1830 .10.1074/jbc.M804590200
[26] Loura, L.M., and Prieto, M.FRET in Membrane Biophysics: An Overview. (2011). Front Physiol 2, 82.10.3389/fphys.2011.00082
[27] Mamic, T.M., Holman, N.A., Roberts-Thomson, S.J., and Monteith, G.R. (2000). PMCA1 mRNA expression in rat aortic myocytes: a real-time RT-PCR study. Biochem Biophys Res Commun 276, 1024-1027 .10.1006/bbrc.2000.3578
[28] Miyawaki, A.Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. (2011) Annu Rev Biochem 80, 357-373 .10.1146/annurev-biochem-072909-094736
[29] Mohamed, T.M., Oceandy, D., Prehar, S., Alatwi, N., Hegab, Z., Baudoin, F.M., Pickard, A., Zaki, A.O., Nadif, R., Cartwright, E.J., . (2009). Specific role of neuronal nitric-oxide synthase when tethered to the plasma membrane calcium pump in regulating the beta-adrenergic signal in the myocardium. J Biol Chem 284, 12091-12098 .10.1074/jbc.M809112200
[30] Mohamed, T.M., Oceandy, D., Zi, M., Prehar, S., Alatwi, N., Wang, Y., Shaheen, M.A., Abou-Leisa, R., Schelcher, C., Hegab, Z., . (2011). Plasma membrane calcium pump (PMCA4)-neuronal nitricoxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J Biol Chem 286, 41520-41529 .10.1074/jbc.M111.290411
[31] Moncada, S., and Bolanos, J.P. (2006). Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97, 1676-1689 .10.1111/j.1471-4159.2006.03988.x
[32] Moro, M.A., Cardenas, A., Hurtado, O., Leza, J.C., and Lizasoain, I. (2004). Role of nitric oxide after brain ischaemia. Cell Calcium 36, 265-275 .10.1016/j.ceca.2004.02.011
[33] Oceandy, D., Mohamed, T.M., Cartwright, E.J., and Neyses, L. (2010). Local signals with global impacts and clinical implications: lessons from the plasma membrane calcium pump (PMCA4). Biochim Biophys Acta 1813, 974-978 .10.1016/j.bbamcr.2010.12.007
[34] Oceandy, D., Stanley, P.J., Cartwright, E.J., and Neyses, L. (2007). The regulatory function of plasma-membrane Ca(2+)-ATPase (PMCA) in the heart. Biochem Soc Trans 35, 927-930 .10.1042/BST0350927
[35] Pacher, P., Beckman, J.S., and Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87, 315-424 .10.1152/physrev.00029.2006
[36] Parton, R.G. (2001). Cell biology. Life without caveolae. Science 293, 2404-2405 .10.1126/science.1065677
[37] Piehler, J. (2005). New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 15, 4-14 .10.1016/j.sbi.2005.01.008
[38] Sagami, I., Daff, S., and Shimizu, T. (2001). Intra-subunit and inter-subunit electron transfer in neuronal nitric-oxide synthase: effect of calmodulin on heterodimer catalysis. J Biol Chem 276, 30036-30042 .10.1074/jbc.M104123200
[39] Schuh, K., Uldrijan, S., Gambaryan, S., Roethlein, N., and Neyses, L. (2003). Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. J Biol Chem 278, 9778-9783 .10.1074/jbc.M212507200
[40] Schuh, K., Uldrijan, S., Telkamp, M., Rothlein, N., and Neyses, L. (2001). The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 155, 201-205 .10.1083/jcb.200104131
[41] Sepulveda, M.R., Berrocal-Carrillo, M., Gasset, M., and Mata, A.M. (2006). The plasma membrane Ca2+-ATPase isoform 4 is localized in lipid rafts of cerebellum synaptic plasma membranes. J Biol Chem 281, 447-453 .10.1074/jbc.M506950200
[42] Sgambato-Faure, V., Xiong, Y., Berke, J.D., Hyman, S.E., and Strehler, E.E. (2006). The Homer-1 protein Ania-3 interacts with the plasma membrane calcium pump. Biochem Biophys Res Commun 343, 630-637 .10.1016/j.bbrc.2006.03.020
[43] Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569-572 .10.1038/42408
[44] Stamler, J.S., and Meissner, G. (2001). Physiology of nitric oxide in skeletal muscle. Physiol Rev 81, 209-237 .
[45] Strehler, E.E., and Zacharias, D.A. (2001). Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81, 21-50 .
[46] Tachibana, T., Ogura, H., Tokunaga, A., Dai, Y., Yamanaka, H., Seino, D., and Noguchi, K. (2004). Plasma membrane calcium ATPase expression in the rat spinal cord. Brain Res Mol Brain Res 131, 26-32 .10.1016/j.molbrainres.2004.08.001
[47] Torreilles, F., Salman-Tabcheh, S., Guerin, M., and Torreilles, J. (1999). Neurodegenerative disorders: the role of peroxynitrite. Brain Res Brain Res Rev 30, 153-163 .10.1016/S0165-0173(99)00014-4
[48] Tran, M.H., Yamada, K., Nakajima, A., Mizuno, M., He, J., Kamei, H., and Nabeshima, T. (2003). Tyrosine nitration of a synaptic protein synaptophysin contributes to amyloid beta-peptide-induced cholinergic dysfunction. Mol Psychiatry 8, 407-412 .10.1038/sj.mp.4001240
[49] Williams, J.C., Armesilla, A.L., Mohamed, T.M., Hagarty, C.L., McIntyre, F.H., Schomburg, S., Zaki, A.O., Oceandy, D., Cartwright, E.J., Buch, M.H., . (2006). The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281, 23341-23348 .10.1074/jbc.M513341200
[50] Youvan, D.C., Silva, C.M., Bylina, E.J., Coleman, W.J., Dilworth, M.R., and Yang, M.M. (1997). Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on Nickel chelating beads. Biotechnology ia 3, 1-18 .
[51] Zhang, J., Xiao, P., and Zhang, X. (2009). Phosphatidylserine externalization in caveolae inhibits Ca2+ efflux through plasma membrane Ca2+-ATPase in ECV304. Cell Calcium 45, 177-184 .10.1016/j.ceca.2008.09.002
[52] Zhou, L., and Zhu, D.Y. (2009). Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20, 223-230 .10.1016/j.niox.2009.03.001
[53] Zhou, X., and He, P. (2011). Improved measurements of intracellular nitric oxide in intact microvessels using 4,5-diaminofluorescein diacetate. Am J Physiol Heart Circ Physiol 301, H108-114 .10.1152/ajpheart.00195.2011
AI Summary AI Mindmap
PDF(1102 KB)

Accesses

Citations

Detail

Sections
Recommended

/