Thermodynamics and kinetics of isothermal precipitation in magnesium alloys

Hongcan Chen , Jingli Sun , Shenglan Yang , Yu Zhang , Kai Tang , Chuan Zhang , Yangfan Lu , Qun Luo , Qian Li

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e86

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e86 DOI: 10.1002/mgea.86
REVIEW

Thermodynamics and kinetics of isothermal precipitation in magnesium alloys

Author information +
History +
PDF

Abstract

As the lightest structural metal materials, Mg alloys are promising for wider applications but are limited by low strength and poor corrosion resistance. Precipitation is an effective way to improve the strength and other performance of Mg alloys. Facing the extremely complex precipitation process, the crystal structures of precipitates, precipitation sequence, and precipitation thermodynamic and kinetics behaviors have stimulated extensive research interests. Precipitation kinetics, which connects composition, aging processes, and precipitate microstructure, is pivotal in determining the performance of age-hardening Mg alloys. Despite numerous studies on this topic, a comprehensive review remains absent. This work aims to bridge that gap by analyzing precipitation from thermodynamic and kinetic perspectives. Thermodynamically, the stability of precipitates, nucleation driving forces, and resistances of precipitation are discussed. Kinetically, the various kinetic theories including semi-empirical models, mean-field models, phase-field model, and atomistic approaches and their applications in Mg alloys are systematically summarized. Among these, mean-field models emerge as particularly promising for accurately predicting precipitation processes. Finally, the framework for property prediction based on precipitation kinetics is introduced to illustrating the role of integrated computational materials engineering (ICME) in designing advanced Mg alloys.

Keywords

kinetics / Mg alloys / precipitation / properties / thermodynamics

Cite this article

Download citation ▾
Hongcan Chen, Jingli Sun, Shenglan Yang, Yu Zhang, Kai Tang, Chuan Zhang, Yangfan Lu, Qun Luo, Qian Li. Thermodynamics and kinetics of isothermal precipitation in magnesium alloys. Materials Genome Engineering Advances, 2025, 3(1): e86 DOI:10.1002/mgea.86

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song J, She J, Chen D, Pan F. Latest research advances on magnesium and magnesium alloys worldwide. J Magnesium Alloys. 2020; 8(1): 1-41.

[2]

Li S, Dong Z, Jin J, et al. Optimal design of high-performance rare-earth-free wrought magnesium alloys using machine learning. MGE Adv. 2024; 2(2):e45.

[3]

Gou W, Shi ZZ, Zhu Y, et al. Multi-objective optimization of three mechanical properties of Mg alloys through machine learning. MGE Adv. 2024; 2(3):e54.

[4]

Yang H, Xie W, Song J, et al. Current progress of research on heat-resistant Mg alloys: a review. Int J Miner Metall Mater. 2024; 31(6): 1406-1425.

[5]

Wang H, Li J, Wei X, et al. Thermodynamic and kinetic regulation for Mg-based hydrogen storage materials: challenges, strategies, and perspectives. Adv Funct Mater. 2024; 34(42):2406639.

[6]

Xie J, Zhang Z, Liu S, et al. Designing new low alloyed Mg-RE alloys with high strength and ductility via high-speed extrusion. Int J Min Metall Mater. 2023; 30(1): 82-91.

[7]

Luo Q, Guo Y, Liu B, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: a critical review. J Mater Sci Technol. 2020; 44: 171-190.

[8]

Deng B, Lv SH, Yang Q, Zhao DY, Fan JY, Qiu X. Lath-like phases formed at an extremely high temperature in a Mg-RE (RE = rare earth)-Al alloy. Rare Met. 2024; 43(8): 3937-3945.

[9]

Pei YB, Wei EB, Yao MJ, Yu MH, Zhao MS, Teng BG. Plastic deformation mechanism of Mg-Gd-Y-(Sm)-Zr alloys at room and cryogenic temperature. Rare Met. 2024.

[10]

Tian Z, Yang Q, Guan K, Cao Z.-Y, Meng J. Microstructural evolution and aging behavior of Mg-4.5Y-2.5Nd-1.0Gd-0.5Zr alloys with different Zn additions. Rare Met. 2021; 40(8): 2188-2196.

[11]

Liu C, Yang X, Peng J, et al. In-situ and ex-situ investigation of deformation behaviors of a dual-phase Mg-Ni-Y alloy. Scr Mater. 2023; 226:115264.

[12]

Zhou Y, Liu C, Luo Q, Li Q. Enhancing strength and ductility of low-cost rare earth Mg-5Y-Ni alloy containing LPSO phase fabricated via multi-pass rolling based on dislocation regulation and grain refinement. Mater Char. 2022; 193:112288.

[13]

Zhou Y, Luo Q, Jiang B, Li Q, Pan F. Strength-ductility synergy in Mg98.3Y1.3Ni0.4 alloy processed by high temperature homogenization and rolling. Scr Mater. 2022; 208:208114345.

[14]

Yuan M, He C, Zhao J, et al. Microstructure evolution and mechanical properties of the Mg-Sm-Gd-Zn-Zr alloy during extrusion. J Mater Res Technol. 2021; 15: 2518-2528.

[15]

Lu XG, He Y, Zheng W. Design of advanced steels by integrated computational materials engineering. MGE Adv. 2024; 2(2):e36.

[16]

Zhu L, Luo Q, Chen Q, et al. Prediction of ultimate tensile strength of Al-Si alloys based on multimodal fusion learning. MGE Adv. 2024; 2(1):e26.

[17]

Nie JF. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr Mater. 2003; 48(8): 1009-1015.

[18]

Robson JD, Stanford N, Barnett MR. Effect of precipitate shape on slip and twinning in magnesium alloys. Acta Mater. 2011; 59(5): 1945-1956.

[19]

Wang F, Bhattacharyya JJ, Agnew SR. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys. Mater Sci Eng. 2016; 666: 114-122.

[20]

Bhattacharyya JJ, Wang F, Stanford N, Agnew SR. Slip mode dependency of dislocation shearing and looping of precipitates in Mg alloy WE43. Acta Mater. 2018; 146: 55-62.

[21]

Pan H, Pan F, Yang R, et al. Thermal and electrical conductivity of binary magnesium alloys. J Mater Sci. 2014; 49(8): 3107-3124.

[22]

Xie T, Shi H, Wang H, Luo Q, Li Q, Chou KC. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system. J Mater Sci Technol. 2022; 97: 147-155.

[23]

Du Q, Poole WJ, Wells MA. A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys. Acta Mater. 2012; 60(9): 3830-3839.

[24]

Hou Z, Hedström P, Chen Q, Xu Y, Wu D, Odqvist J. Quantitative modeling and experimental verification of carbide precipitation in a martensitic Fe-0.16 wt%C-4.0 wt%Cr alloy. Calphad. 2016; 53: 39-48.

[25]

Tiley J, Viswanathan GB, Srinivasan R, Banerjee R, Dimiduk DM, Fraser HL. Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT. Acta Mater. 2009; 57(8): 2538-2549.

[26]

Nie JF. Precipitation and hardening in magnesium alloys. Metall Mater Trans A. 2012; 43(11): 3891-3939.

[27]

Zhang Y, Rong W, Wu Y, Peng L, Nie JF, Birbilis N. A detailed HAADF-STEM study of precipitate evolution in Mg-Gd alloy. J Alloys Compd. 2019; 777: 531-543.

[28]

Li ZH, Cheng D, Wang K, et al. Revisited precipitation process in dilute Mg-Ca-Zn alloys. Acta Mater. 2023; 257:119072.

[29]

Schäublin RE, Becker M, Cihova M, et al. Precipitation in lean Mg-Zn-Ca alloys. Acta Mater. 2022; 239:118223.

[30]

Zhu Q, Li Y, Ding Z, et al. Unveiling precipitation behavior in Mg-Y based alloys. Mater Des. 2021; 202:109570.

[31]

Yu H, Guo F, Ma Y, et al. Continuous precipitation behavior of Mg17Al12 phase during multiple steps of twinning-aging procedure in Mg-Al alloys. J Alloys Compd. 2024; 987:174188.

[32]

Kim S.-H, Lee JU, Kim YJ, Bae JH, You BS, Park SH. Accelerated precipitation behavior of cast Mg-Al-Zn alloy by grain refinement. J Mater Sci Technol. 2018; 34(2): 265-276.

[33]

Robson JD, Smith AD, Guo J, Donoghue JM, Davis AE. Grain-scale in-situ study of discontinuous precipitation in Mg-Al. Acta Mater. 2024; 263:119497.

[34]

Chen H, Xie T, Liu Q, et al. Mechanism and prediction of aging time related thermal conductivity evolution of Mg-Zn alloys. J Alloys Compd. 2023; 930:167392.

[35]

Rong W, Wu Y, Zhang Y, et al. Characterization and strengthening effects of γ′ precipitates in a high-strength casting Mg-15Gd-1Zn-0.4Zr (wt.%) alloy. Mater Char. 2017; 126: 1-9.

[36]

Gao X, Nie JF. Characterization of strengthening precipitate phases in a Mg-Zn alloy. Scr Mater. 2007; 56(8): 645-648.

[37]

Rosalie JM, Somekawa H, Singh A, Mukai T. Orientation relationships between icosahedral clusters in hexagonal MgZn2 and monoclinic Mg4Zn7 phases in Mg-Zn(-Y) alloys. Phil Mag. 2011; 91(19-21): 2634-2644.

[38]

Xie YP, Wang ZY, Hou ZF. The phase stability and elastic properties of MgZn2 and Mg 4Zn7 in Mg-Zn alloys. Scr Mater. 2013; 68(7): 495-498.

[39]

Guo YL, Liu B, Xie W, Luo Q, Li Q. Anti-phase boundary energy of β series precipitates in Mg-Y-Nd system. Scr Mater. 2021; 193: 127-131.

[40]

Wu X, Li C, Guo C, Du Z. Thermodynamic re-assessment of the Mg-Gd-Y ternary system coupling with the driving forces for phase precipitations during aging process. J Magnesium Alloys. 2023; 11(7): 2495-2517.

[41]

Yang P, Wang LN, Xie QG, Li JZ, Ding H, Lu LL. Influence of deformation on precipitation in AZ80 magnesium alloy. Int J Min Metall Mater. 2011; 18(3): 338-343.

[42]

Zhai C, Luo Q, Cai Q, Guan R, Li Q. Thermodynamically analyzing the formation of Mg12Nd and Mg41Nd5 in Mg-Nd system under a static magnetic field. J Alloys Compd. 2019; 773: 202-209.

[43]

Li Y, Gu Q, Li Q, Zhang T. In-situ synchrotron X-ray diffraction investigation on hydrogen-induced decomposition of long period stacking ordered structure in Mg-Ni-Y system. Scr Mater. 2017; 127: 102-107.

[44]

Song B, She J, Guo N, et al. Regulating precipitates by simple cold deformations to strengthen Mg alloys: a Review. Materials. 2019; 12(16):2507.

[45]

Liu Y, Song Y, Li N, et al. Mechanical properties and microstructure evolution of Mg-Gd alloy during aging treatment. Metals. 2022; 12(1):39.

[46]

Zheng JX, Li Z, Tan LD, Xu XS, Luo RC, Chen B. Precipitation in Mg-Gd-Y-Zr Alloy: atomic-scale insights into structures and transformations. Mater Char. 2016; 117: 76-83.

[47]

Zheng JK, Luo R, Zeng X, Chen B. Nano-scale precipitation and phase growth in Mg-Gd binary alloy: an atomic-scale investigation using HAADF-STEM. Mater Des. 2018; 137: 316-324.

[48]

Gao X, Nie JF. Enhanced precipitation-hardening in Mg-Gd alloys containing Ag and Zn. Scr Mater. 2008; 58(8): 619-622.

[49]

Koltygin AV, Bazhenov VE, Khasenova RS, Komissarov AA, Bazlov AI, Bautin VA. Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. Int J Min Metall Mater. 2019; 26(7): 858-868.

[50]

Guo Y, Luo Q, Liu B, Li Q. Elastic properties of long-period stacking ordered phases in Mg-Zn-Y and Mg-Ni-Y alloys: a first-principles study. Scr Mater. 2020; 178: 422-427.

[51]

Li Z, Zheng J, Chen B. Unravelling the Structure of γ″ in Mg-Gd-Zn: an atomic-scale HAADF-STEM investigation. Mater Char. 2016; 120: 345-348.

[52]

Gu XF, Furuhara T, Kiguchi T, Konno TJ, Chen L, Yang P. On the atomic structure of γ″ phase in Mg-Zn-Gd alloy. Scr Mater. 2018; 146: 64-67.

[53]

Nie JF, Oh-ishi K, Gao X, Hono K. Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy. Acta Mater. 2008; 56(20): 6061-6076.

[54]

Wang D, Fu P, Peng L, Wang Y, Ding W. A study of microstructure, mechanical behavior and strengthen mechanism in the Mg-10Gd-0.2Zn-(Y)-0.4Zr alloy. Mater Sci Eng. 2020; 793:139881.

[55]

Wei K, Xiao L, Gao B, et al. Effect of aging temperature on the hardening behavior and precipitation evolution of Mg-10Gd alloy. Mater Char. 2023; 196:112580.

[56]

Yu Z, Huang Y, Peng B, Liu K, Li S, Du W. Formation mechanism of β1 phase in age-hardenable magnesium-rare earth alloys: insight from in-situ and ex-situ observations with HAADF-STEM. Scr Mater. 2023; 237:115689.

[57]

Jain J, Cizek P, Poole WJ, Barnett MR. Precipitate characteristics and their effect on the prismatic-slip-dominated deformation behaviour of an Mg-6 Zn alloy. Acta Mater. 2013; 61(11): 4091-4102.

[58]

Wang D, Fu P, Peng L, Wang Y, Ding W. Development of high strength sand cast Mg-Gd-Zn alloy by co-precipitation of the prismatic β′ and β1 phases. Mater Char. 2019; 153: 157-168.

[59]

Xie H, Pan H, Ren Y, et al. Co-existences of the two types of β′ precipitations in peak-aged Mg-Gd binary alloy. J Alloys Compd. 2018; 738: 32-36.

[60]

Zhang F, Wang Y, Duan Y, et al. Precipitation processes during the peak-aged and over-aged stages in an Mg-Gd-Y-Zr alloy. J Alloys Compd. 2019; 788: 541-548.

[61]

Porter DA, Easterling KE, Mohamed YS. Phase Transformations in Metals and Alloys (Revised Reprint). 3rd ed. CRC Press; 2009.

[62]

Wang D, Amsler M, Hegde VI, et al. Crystal structure, energetics, and phase stability of strengthening precipitates in Mg alloys: a first-principles study. Acta Mater. 2018; 158: 65-78.

[63]

Liu CQ, Chen HW, Liu H, Zhao XJ, Nie JF. Metastable precipitate phases in Mg-9.8 wt%Sn alloy. Acta Mater. 2018; 144: 590-600.

[64]

Ji YZ, Issa A, Heo TW, Saal JE, Wolverton C, Chen LQ. Predicting β′ precipitate morphology and evolution in Mg-RE alloys using a combination of first-principles calculations and phase-field modeling. Acta Mater. 2014; 76: 259-271.

[65]

Liu YX, Liu H, Zhu YM, Wilson NC, Nie JF. A first-principles study of βF′ phase in magnesium-rare earth binary systems. Comput Mater Sci. 2019; 170:109126.

[66]

Issa A, Saal JE, Wolverton C. Physical factors controlling the observed high-strength precipitate morphology in Mg-rare earth alloys. Acta Mater. 2014; 65: 240-250.

[67]

Saal JE, Wolverton C. Thermodynamic stability of Mg-based ternary long-period stacking ordered structures. Acta Mater. 2014; 68: 325-338.

[68]

Zheng J, Zhou W, Bin C. Precipitation in Mg-Sm binary alloy during isothermal ageing: atomic-scale insights from scanning transmission electron microscopy. Mater Sci Eng. 2016; 669: 304-311.

[69]

Natarajan AR, Van der Ven A. A unified description of ordering in HCP Mg-RE alloys. Acta Mater. 2017; 124: 620-632.

[70]

Shi H, Li Q, Zhang J, Luo Q, Chou KC. Re-assessment of the Mg-Zn-Ce system focusing on the phase equilibria in Mg-rich corner. Calphad. 2020; 68:101742.

[71]

Liu C, Luo Q, Gu QF, Li Q, Chou KC. Thermodynamic assessment of Mg-Ni-Y system focusing on long-period stacking ordered phases in the Mg-rich corner. J Magnesium Alloys. 2022; 10(11): 3250-3266.

[72]

Wang Z, Luo Q, Chen S, Chou KC, Li Q. Experimental investigation and thermodynamic calculation of the Mg-Ni-Y system (Y<50 at.%) at 400 and 500℃. J Alloys Compd. 2015; 649: 1306-1314.

[73]

Niu C, Liu M, Li C, Du Z, Guo C. Thermodynamic description on the miscibility gap of the Mg-based solid solution in the Mg-Zn, Mg-Nd and Mg-Zn-Nd systems. Calphad. 2010; 34(4): 428-433.

[74]

Wu XP, Li CR, Zheng JX, et al. Thermodynamic re-assessment of the Mg-Gd binary system coupling the microstructure evolution during ageing process. Calphad. 2020; 68:101712.

[75]

Wu X, Li C, Guo C, Du Z. Thermodynamic re-assessment of the Mg-Y binary system coupling with the precipitation sequence during aging process. Calphad. 2020; 71:102010.

[76]

Si HJ, Jiang YX, Tang Y, Zhang LJ. Stable and metastable phase equilibria in binary Mg-Gd system: a comprehensive understanding aided by CALPHAD modeling. J Magnesium Alloys. 2019; 7(3): 501-513.

[77]

Liu H, Gao Y, Liu JZ, Zhu YM, Wang Y, Nie JF. A simulation study of the shape of β′ precipitates in Mg-Y and Mg-Gd alloys. Acta Mater. 2013; 61(2): 453-466.

[78]

Zhang Q, Makineni SK, Allison JE, Zhao JC. Effective evaluation of interfacial energy by matching precipitate sizes measured along a composition gradient with Kampmann-Wagner numerical (KWN) modeling. Scr Mater. 2019; 160: 70-74.

[79]

Han Z, Han G, Luo AA, Liu B. Large-scale three-dimensional phase-field simulation of multi-variant β-Mg17Al12 in Mg-Al-based alloys. Comput Mater Sci. 2015; 101: 248-254.

[80]

Esteban-Manzanares G, Alizadeh R, Papadimitriou I, Dickel D, Barrett CD, Llorca J. Atomistic simulations of the interaction of basal dislocations with MgZn2 precipitates in Mg alloys. Mater Sci Eng. 2020; 788:139555.

[81]

Choudhuri D, Banerjee R, Srinivasan SG. Interfacial structures and energetics of the strengthening precipitate phase in creep-resistant Mg-Nd-based alloys. Sci Rep. 2017; 7(1):40540.

[82]

Tsukada Y, Beniya Y, Koyama T. Equilibrium shape of isolated precipitates in the α-Mg phase. J Alloys Compd. 2014; 603: 65-74.

[83]

Fanfoni M, Tomellini M. The Johnson-Mehl- Avrami-Kohnogorov model: a brief review. Il Nuovo Cimento D. 1998; 20(7): 1171-1182.

[84]

Austin J. Kinetics of the decomposition of austenite at constant temperature. In: Transactions of the American Institute of Mining and Metallurgical Engineers. 1939; 135: 396-415.

[85]

Wagner RH, Kampmann R. Homogeneous second phase precipitation. In: RW Cahn, P Haasen, EJ Kramer, eds. Materials Science and Technology: a Comprehensive Treatment. VCH; 1991: 213-245.

[86]

Liu H, Gao Y, Zhu YM, Wang Y, Nie JF. A simulation study of β1 precipitation on dislocations in an Mg-rare earth alloy. Acta Mater. 2014; 77: 133-150.

[87]

Jiang H, Li SX, Hao LL, et al. Kinetic simulation of early-stage precipitation behavior in Mg-RE binary alloys during aging process. J Magnesium Alloys. 2023.

[88]

Ogawa Y, Sutou Y, Ando D, Koike J. Aging precipitation kinetics of Mg-Sc alloy with bcc+hcp two-phase. J Alloys Compd. 2018; 747: 854-860.

[89]

Liu Z, Zhou J, Yang L, Lai Y, Liu Y, Jin H. Study on microstructure and properties of Mg-Al-Si-Ca alloy by heat treatment. J Alloys Compd. 2023; 947:169431.

[90]

Balasubramani N, Srinivasan A, Pillai UTS, Pai BC. Effect of Pb and Sb additions on the precipitation kinetics of AZ91 magnesium alloy. Mater Sci Eng. 2007; 457(1): 275-281.

[91]

Amir Esgandari B, Mehrjoo H, Nami B, Miresmaeili SM. The effect of Ca and RE elements on the precipitation kinetics of Mg17Al12 phase during artificial aging of magnesium alloy AZ91. Mater Sci Eng. 2011; 528(15): 5018-5024.

[92]

Ren LB, Quan GF, Zhou MY, Guo YY, Jiang ZZ, Tang Q. Effect of Y addition on the aging hardening behavior and precipitation evolution of extruded Mg-Al-Zn alloys. Mater Sci Eng. 2017; 690: 195-207.

[93]

Shi G, Yuan J, Li T, et al. Enhanced precipitation strengthening of extruded Mg-8 wt.%Al-0.5 wt.%Zn (AZ80) magnesium alloy by extension twinning. Mater Sci Eng. 2020; 774:138906.

[94]

Sahoo BN, Panigrahi SK. Effect of in-situ (TiC-TiB2) reinforcement on aging and mechanical behavior of AZ91 magnesium matrix composite. Mater Char. 2018; 139: 221-232.

[95]

Fatmi M, Djemli A, Ouali A, Chihi T, Ghebouli MA, Belhouchet H. Heat treatment and kinetics of precipitation of β-Mg17Al12 phase in AZ91 alloy. Results Phys. 2018; 10: 693-698.

[96]

Alomairy S. Dissolution mechanism and kinetics of β(Mg17Al12) phases in AZ91 magnesium alloy. J Magnesium Alloys. 2024; 12(4): 1581-1592.

[97]

Jiang L, Zhang D, Dong Y, et al. Microstructure and tensile properties of as extruded and as aged Mg-Al-Zn-Mn-Sn alloy. Mater Sci Technol. 2015; 31(9): 1088-1095.

[98]

Yang Z, Li JP, Guo YC, et al. Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zr alloy. Mater Sci Eng. 2007; 454-455: 274-280.

[99]

Shadkam A. A Study of Homogenization and Precipitation Hardening Behaviour of Mg-Ca-Zn Alloys. University of Waterloo; 2008.

[100]

Starink MJ. Kinetic equations for diffusion-controlled precipitation reactions. J Mater Sci. 1997; 32(15): 4061-4070.

[101]

Stulíková I, Smola B. Identification and characterization of phase transformations by the resistivity measurements in Mg-RE-Mn alloys. Solid State Phenom. 2008; 138: 57-62.

[102]

Celotto S, Bastow T. Study of precipitation in aged binary Mg-Al and ternary Mg-Al-Zn alloys using 27Al NMR spectroscopy. Acta Mater. 2001; 49(1): 41-51.

[103]

Zener C. Theory of growth of spherical precipitates from solid solution. J Appl Phys. 1949; 20(10): 950-953.

[104]

Shi H, Huang Y, Luo Q, Gavras S, Willumeit-Römer R, Hort N. A short review on diffusion coefficients in magnesium alloys and related applications. J Magnesium Alloys. 2022; 10(12): 3289-3305.

[105]

Yi W, Ma S, Gao J, et al. A novel atomic mobility model for alloys under pressure and its application in high pressure heat treatment Al-Si alloys by integrating CALPHAD and machine learning. J Mater Sci Technol. 2025; 217: 116-127.

[106]

Zhong W, Zhao JC. A comprehensive diffusion mobility database comprising 23 elements for magnesium alloys. Acta Mater. 2020; 201: 191-208.

[107]

Zhang C, Cao W, Chen SL, et al. Precipitation simulation of AZ91 alloy. JOM. 2014; 66(3): 389-396.

[108]

Schmid-Fetzer R, Zhang F. The light alloy Calphad databases PanAl and PanMg. Calphad. 2018; 61: 246-263.

[109]

Xia X, Sanaty-Zadeh A, Zhang C, Luo AA, Stone DS. Experimental investigation and simulation of precipitation evolution in Mg-3Nd-0.2Zn alloy. Calphad. 2018; 60: 58-67.

[110]

Robson JD, Paa-Rai C. The interaction of grain refinement and ageing in magnesium-zinc-zirconium (ZK) alloys. Acta Mater. 2015; 95: 10-19.

[111]

Paliwal M, Jung I.-H. Precipitation kinetic model and its applications to Mg alloys. Calphad. 2019; 64: 196-204.

[112]

Xia X, Sun W, Luo AA, Stone DS. Precipitation evolution and hardening in Mg-Sm-Zn-Zr alloys. Acta Mater. 2016; 111: 335-347.

[113]

Holmedal B, Osmundsen E, Du Q. Precipitation of non-spherical particles in aluminum alloys Part I: generalization of the Kampmann-Wagner numerical model. Metall Mater Trans A. 2016; 47(1): 581-588.

[114]

Svoboda J, Fischer FD, Fratzl P, Kozeschnik E. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: theory. Mater Sci Eng. 2004; 385(1-2): 166-174.

[115]

Kozeschnik E, Svoboda J, Fratzl P, Fischer FD. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates II: numerical solution and application. Mater Sci Eng. 2004; 385(1-2): 157-165.

[116]

Kozeschnik E, Svoboda J, Fischer FD. Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems. Calphad. 2004; 28(4): 379-382.

[117]

Zhang Y, Liu Y, Liu S, et al. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys. J Mater Sci Technol. 2021; 62: 70-82.

[118]

Miao J, Zhang C, Klarner AD, et al. Characterization and modeling of concurrent precipitation in Mg-Al-Sn alloys using an improved Kampmann-Wagner numerical (KWN) model. Materialia. 2022; 21:101348.

[119]

Zhang N, Ma J, Zheng X, Li S, Han Z. Modeling the precipitation kinetics and yield strength of Mg-Gd-Y-Zr alloys based on an improved Kampmann-Wagner numerical model and modified orowan strengthening. J Mater Eng Perform. 2023; 33(22): 12334-12342.

[120]

Yang Y, Massardier V, Ferdowsi MRG, et al. Revisiting precipitation kinetics in Mg-Zn alloy - a multi-characterization and modeling study. Acta Mater. 2023; 260:119276.

[121]

Pike TJ, Noble B. The formation and structure of precipitates in a dilute magnesium-neodymium alloy. J Less Common Metals. 1973; 30(1): 63-74.

[122]

Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature. Acta Mater. 2007; 55(20): 6798-6805.

[123]

Chen LQ. Phase-field models for microstructure evolution. Annu Rev Mater Res. 2002; 32(1): 113-140.

[124]

Yang S, Zhong J, Wang K, et al. Complex hexagonal close-packed dendritic growth during alloy solidification by graphics processing unit-accelerated three-dimensional phase-field simulations: demo for Mg-Gd alloy. Rare Met. 2023; 42(10): 3468-3484.

[125]

Allen SM, Cahn JW. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 1979; 27(6): 1085-1095.

[126]

Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys. 1958; 28(2): 258-267.

[127]

Liu H, Xu WF, Wilson NC, Peng LM, Nie JF. Formation of and interaction between β′F and β′ phases in a Mg‒Gd alloy. J Alloys Compd. 2017; 712: 334-344.

[128]

Liu H, Zhu YM, Wilson NC, Nie JF. On the structure and role of βF′ in β1 precipitation in Mg-Nd alloys. Acta Mater. 2017; 133: 408-426.

[129]

Gao Y, Liu H, Shi R, et al. Simulation study of precipitation in an Mg-Y-Nd alloy. Acta Mater. 2012; 60(12): 4819-4832.

[130]

Wang T, Liu F. Multiscale thermo-kinetic characterization for β′ and β1 precipitation in Mg-Sm alloys. Acta Mater. 2023; 254:119011.

[131]

Eymann M, Perez M, Chaise T, Elguedj T, Geslin PA. A full-field approach for precipitation in metallic alloys. Comparison with a mean-field model. Acta Mater. 2024; 279:120296.

[132]

Finel A, Le Bouar Y, Dabas B, Appolaire B, Yamada Y, Mohri T. Sharp phase field method. Phys Rev Lett. 2018; 121(2):025501.

[133]

Liao H, Kimizuka H, Ishii A, Du JP, Ogata S. Nucleation kinetics of the β″ precipitate in dilute Mg-Y alloys: a kinetic Monte Carlo study. Scr Mater. 2022; 210:114480.

[134]

Kimizuka H, Ogata S. Predicting atomic arrangement of solute clusters in dilute Mg alloys. Mater Res Lett. 2013; 1(4): 213-219.

[135]

Adorno AT, Silva RAG, Neves TB. Ag precipitation and dissolution reactions in the Cu-3wt.% Al-4wt.% Ag alloy. Mater Sci Eng. 2006; 441(1): 259-265.

[136]

Ardell AJ. Precipitation hardening. Metall Trans A. 1985; 16(12): 2131-2165.

[137]

Gladman T. Precipitation hardening in metals. Mater Sci Technol. 1999; 15(1): 30-36.

[138]

Hutchinson CR, Nie JF, Gorsse S. Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy. Metall Mater Trans A. 2005; 36(8): 2093-2105.

[139]

Mecking H, Kocks UF, Hartig C. Taylor factors in materials with many deformation modes. Scr Mater. 1996; 35(4): 465-471.

[140]

Zhu WF, Luo Q, Zhang JY, Li Q. Phase equilibria of Mg-La-Zr system and thermal conductivity of selected alloys. J Alloys Compd. 2018; 731: 784-795.

[141]

Yao F, Li Z, Hu B, Jiang Z, Zeng X, Li D. Unveiling the interface between second phases and matrix on thermal conductivity of Mg alloys. J Mater Res Technol. 2024; 28: 1824-1833.

[142]

Wang J, Carson JK, North MF, Cleland DJ. A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int J Heat Mass Tran. 2006; 49(17): 3075-3083.

[143]

Progelhof RC, Throne JL, Ruetsch RR. Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci. 1976; 16(9): 615-625.

[144]

Behrens E. Thermal conductivities of composite materials. J Compos Mater. 1968; 2(1): 2-17.

[145]

Bauer TH. A general analytical approach toward the thermal conductivity of porous media. Int J Heat Mass Tran. 1993; 36(17): 4181-4191.

[146]

Wen S, Du Y, Tan J, et al. A new model for thermal conductivity of “continuous matrix/dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems. J Mater Sci Technol. 2022; 97: 123-133.

[147]

Zhang C, Du Y, Liu S, Liu Y, Sundman B. Thermal conductivity of Al-Cu-Mg-Si alloys: experimental measurement and CALPHAD modeling. Thermochim Acta. 2016; 635: 8-16.

[148]

Huang L, Liu S, Du Y, Zhang C. Thermal conductivity of the Mg-Al-Zn alloys: experimental measurement and CALPHAD modeling. Calphad. 2018; 62: 99-108.

[149]

Wen S, Liu Y, Kaptay G, Du Y. A new model to describe composition and temperature dependence of thermal conductivity for solution phases in binary alloys. J Mater Sci Technol. 2020; 59: 72-82.

[150]

Li H, Xu W, Zhang Y, et al. Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method. Int J Min Metall Mater. 2024; 31(1): 129-137.

[151]

Chen S, Cao W, Zhang C, et al. Calculation of property contour diagrams. Calphad. 2016; 55: 63-68.

[152]

Luo Q, Zhai C, Sun DK, Chen W, Li Q. Interpolation and extrapolation with the CALPHAD method. J Mater Sci Technol. 2019; 35(9): 2115-2120.

[153]

Maxwell J. A Treatise on Electricity and Magnetism. Oxford University Press; 1904.

[154]

Dubey D, Kadali K, Kancharla H, et al. Effect of precipitate characteristics on the corrosion behavior of a AZ80 magnesium alloy. Metals Mater Int. 2021; 27(9): 3282-3292.

[155]

Kim JY, Byeon JW. Quantitative relation of discontinuous and continuous Mg17Al12 precipitates with corrosion rate of AZ91D magnesium alloy. Mater Char. 2021; 174:111015.

[156]

Chu PW, Marquis EA. Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior. Corrosion Sci. 2015; 101: 94-104.

[157]

Bahmani A, Arthanari S, Shin KS. Formulation of corrosion rate of magnesium alloys using microstructural parameters. J Magnesium Alloys. 2020; 8(1): 134-149.

[158]

Song GL, Atrens A. Recently deepened insights regarding Mg corrosion and advanced engineering applications of Mg alloys. J Magnesium Alloys. 2023; 11(11): 3948-3991.

[159]

Fu W, Yang H, Li T, et al. Enhancing corrosion resistance of ZK60 magnesium alloys via Ca microalloying: the impact of nanoscale precipitates. J Magnesium Alloys. 2023; 11(9): 3214-3230.

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/