Accelerated predictions of the sublimation enthalpy of organic materials with machine learning

Yifan Liu , Huan Tran , Chaofan Huang , Beatriz G. del Rio , V. Roshan Joseph , Mark Losego , Rampi Ramprasad

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e84

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e84 DOI: 10.1002/mgea.84
RESEARCH ARTICLE

Accelerated predictions of the sublimation enthalpy of organic materials with machine learning

Author information +
History +
PDF

Abstract

The sublimation enthalpy, ΔHsub, is a key thermodynamic parameter governing the phase transformation of a substance between its solid and gas phases. This transformation is at the core of many important materials' purification, deposition, and etching processes. While ΔHsub can be measured experimentally and estimated computationally, these approaches have their own different challenges. Here, we develop a machine learning (ML) approach to rapidly predict ΔHsub from data generated using density functional theory (DFT). We further demonstrate how combining ML and DFT methods with active learning can be efficient in exploring the materials space, expanding the coverage of the computed dataset, and systematically improving the ML predictive model of ΔHsub. With an error of ~15 kJ/mol in instantaneous predictions of ΔHsub, the ML model developed in this work will be useful for the community.

Keywords

organic material / machine learning / density functional theory (DFT)

Cite this article

Download citation ▾
Yifan Liu, Huan Tran, Chaofan Huang, Beatriz G. del Rio, V. Roshan Joseph, Mark Losego, Rampi Ramprasad. Accelerated predictions of the sublimation enthalpy of organic materials with machine learning. Materials Genome Engineering Advances, 2025, 3(1): e84 DOI:10.1002/mgea.84

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Poling BE, Prausnitz JM, O’Connell JP. The Properties of Gases and Liquids. McGraw-Hill Education; 2001.

[2]

Acree W, Chickos JS. Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2010. J Phys Chem Ref Data. 2010; 39(4):043101.

[3]

Červinka C, Fulem M. State-of-the-Art calculations of sublimation enthalpies for selected molecular crystals and their computational uncertainty. J Chem Theor Comput. 2017; 13(6): 2840-2850.

[4]

Campbell CT, Sellers JRV. Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. Chem Rev. 2013; 113(6): 4106-4135.

[5]

Leng CZ, Losego MD. Vapor phase infiltration (VPI) for transforming polymers into organic-inorganic hybrid materials: a critical review of current progress and future challenges. Mater Horiz. 2017; 4(5): 747-771.

[6]

Yurata T, Lei H, Tang L, et al. Feasibility and sustainability analyses of carbon dioxide-hydrogen separation via de-sublimation process in comparison with other processes. Int J Hydrogen Energy. 2019; 44(41): 23120-23134.

[7]

McArdle P, Erxleben A. Sublimation - a green route to new solid-state forms. CrystEngComm. 2021; 23(35): 5965-5975.

[8]

Yurata T, Lei H, Tang L, et al. Feasibility and sustainability analyses of carbon dioxide - hydrogen separation via de-sublimation process in comparison with other processes. Int J Hydrogen Energy. 2019; 44(41): 23120-23134.

[9]

Gharagheizi F, Sattari M, Tirandazi B. Prediction of crystal lattice energy using enthalpy of sublimation: a group contribution-based model. Ind Eng Chem Res. 2011; 50(4): 2482-2486.

[10]

Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Adv Mater. 2008; 20(15): 2842-2858.

[11]

Almeida AR, Monte MJ. A brief review of the methods used to evaluate vapour pressures and sublimation enthalpies. Struct Chem. 2013; 24(6): 1993-1997.

[12]

Chickos JS, Gavezzotti A. Sublimation enthalpies of organic compounds: a very large database with a match to crystal structure determinations and a comparison with lattice energies. Cryst Growth Des. 2019; 19(11): 6566-6576.

[13]

Fulem M, Růžička K, Červinka C, Rocha MA, Santos LM, Berg RF. Recommended vapor pressure and thermophysical data for ferrocene. J Chem Thermodyn. 2013; 57: 530-540.

[14]

Růžička K, Fulem M, Červinka C. Recommended sublimation pressure and enthalpy of benzene. J Chem Thermodyn. 2014; 68: 40-47.

[15]

Delle Site A. The vapor pressure of environmentally significant organic chemicals: a review of methods and data at ambient temperature. J Phys Chem Ref Data. 1997; 26(1): 157-193.

[16]

Růžička K, Koutek B, Fulem M, Hoskovec M. Indirect determination of vapor pressures by capillary gas-liquid chromatography: analysis of the reference vapor-pressure data and their treatment. J Chem Eng Data. 2012; 57(5): 1349-1368.

[17]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964; 136(3B): B864-B871.

[18]

Kohn W, Sham L. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965; 140(4A): A1133-A1138.

[19]

Vener MV, Levina EO, Koloskov OA, Rykounov AA, Voronin AP, Tsirelson VG. Evaluation of the lattice energy of the two-component molecular crystals using solid-state density functional theory. Cryst Growth Des. 2014; 14(10): 4997-5003.

[20]

Manin AN, Voronin AP, Manin NG, et al. Salicylamide cocrystals: screening, crystal structure, sublimation thermodynamics, dissolution, and solid-state DFT calculations. J Phys Chem B. 2014; 118(24): 6803-6814.

[21]

Manin AN, Voronin AP, Shishkina AV, Vener MV, Churakov AV, Perlovich GL. Influence of secondary interactions on the structure, sublimation thermodynamics, and solubility of salicylate: 4-hydroxybenzamide cocrystals. combined experimental and theoretical study. J Phys Chem B. 2015; 119(33): 10466-10477.

[22]

Motalov VB, Korobov MA, Dunaev AM, Dunaeva VV, Tyunina EY, Kudin LS. Refined data on the sublimation enthalpy and thermodynamic functions of l-and dl-methionine. J Chem Eng Data. 2022; 67(6): 1326-1334.

[23]

Levina EO, Chernyshov IY, Voronin AP, Alekseiko LN, Stash AI, Vener MV. Solving the enigma of weak fluorine contacts in the solid state: a periodic DFT study of fluorinated organic crystals. RSC Adv. 2019; 9(22): 12520-12537.

[24]

Voronin AP, Perlovich GL, Vener MV. Effects of the crystal structure and thermodynamic stability on solubility of bioactive compounds: DFT study of isoniazid cocrystals. Comput Theor Chem. 2016; 1092: 1-11.

[25]

Tsuzuki S, Orita H, Honda K, Mikami M. First-principles lattice energy calculation of urea and hexamine crystals by a combination of periodic DFT and MP2 two-body interaction energy calculations. J Phys Chem B. 2010; 114(20): 6799-6805.

[26]

Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC. Higher-accuracy van der Waals density functional. Phys Rev B. 2010; 82(8):081101.

[27]

Woods LM, Dalvit DAR, Tkatchenko A, Rodriguez-Lopez P, Rodriguez AW, Podgornik R. Materials perspective on Casimir and van der Waals interactions. Rev Mod Phys. 2016; 88(4):045003.

[28]

Huan TD, Ramprasad R. Polymer structure predictions from first principles. J Phys Chem Lett. 2020; 11(15): 5823-5829.

[29]

Sahu H, Shen K-H, Montoya J, Tran H, Ramprasad R. Polymer structure predictor (psp): a python toolkit for predicting atomic-level structural models for a range of polymer geometries. J Chem Theor Comput. 2022; 18(4): 2737-2748.

[30]

Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E. Calculation of heats of sublimation and solid phase heats of formation. Mol Phys. 1997; 91(5): 923-928.

[31]

Politzer P, Ma Y, Lane P, Concha MC. Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int J Quant Chem. 2005; 105(4): 341-347.

[32]

Byrd EF, Rice BM. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A. 2006; 110(3): 1005-1013.

[33]

Gharagheizi F, Ilani-Kashkouli P, Acree WE, Mohammadi AH, Ramjugernath D. A group contribution model for determining the sublimation enthalpy of organic compounds at the standard reference temperature of 298 K. Fluid Phase Equil. 2013; 354: 265-285.

[34]

Liu R, Tang Y, Tian J, et al. QSPR models for sublimation enthalpy of energetic compounds. Chem Eng J. 2023; 474:145725.

[35]

Mathieu D. Simple alternative to neural networks for predicting sublimation enthalpies from fragment contributions. Ind Eng Chem Res. 2012; 51(6): 2814-2819.

[36]

Suntsova MA, Dorofeeva OV. Prediction of enthalpies of sublimation of high-nitrogen energetic compounds: modified Politzer model. J Mol Graph Model. 2017; 72: 220-228.

[37]

Landrum G. Others RDKit: open-source cheminformatics. 2006. http://www.rdkit.org

[38]

Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. Machine learning and materials informatics: recent applications and prospects. npj Comput Mater. 2017; 3(1): 54.

[39]

Chen L, Pilania G, Batra R, et al. Polymer informatics: current status and critical next steps. Mater Sci Eng R Rep. 2021; 144:100595.

[40]

Tran H, Kim C, Chen L, et al. Machine-learning predictions of polymer properties with Polymer Genome. J Appl Phys. 2020; 128(17):171104.

[41]

Kim C, Chandrasekaran A, Huan TD, Das D, Ramprasad R. Polymer genome: a data-powered polymer informatics platform for property predictions. J Phys Chem C. 2018; 122(31): 17575-17585.

[42]

Lookman T, Balachandran PV, Xue D, Yuan R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput Mater. 2019; 5(1): 21.

[43]

Kim C, Chandrasekaran A, Jha A, Ramprasad R. Active-learning and materials design: the example of high glass transition temperature polymers. MRS Commun. 2019; 9(3): 860-866.

[44]

Huan TD, Batra R, Chapman J, Kim C, Chandrasekaran A, Ramprasad R. Iterative-learning strategy for the development of application-specific atomistic force fields. J Phys Chem C. 2019; 123(34): 20715-20722.

[45]

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993; 47(1): 558-561.

[46]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996; 6(1): 15-50.

[47]

Kresse G. Ab initio Molekular Dynamik für flüssige Metalle Ph.D. thesis. Technische Universität Wien; 1993.

[48]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54(16): 11169-11186.

[49]

Vaitkus A, Merkys A, Gražulis S. Validation of the Crystallography open database using the crystallographic information framework. J Appl Crystallogr. 2021; 54(2): 661-672.

[50]

Quirós M, Gražulis S, Girdzijauskaitė S, Merkys A, Vaitkus A. Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. J Cheminf. 2018; 10(1):23.

[51]

Merkys A, Vaitkus A, Butkus J, Okulič-Kazarinas M, Kairys V, Gražulis S. COD::CIF::Parser: an error-correcting CIF parser for the Perl language. J Appl Crystallogr. 2016; 49(1): 292-301.

[52]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made Simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[53]

Ong SP, Richards WD, Jain A, et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci. 2013; 68: 314-319.

[54]

Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988; 28: 31-36.

[55]

Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017.

[56]

Rasmussen CE, C. K. I. W. Gaussian Processes for Machine Learning. the MIT Press: Massachusetts Institute of Technology; 2006.

[57]

William E, Acree JSC NIST chemistry WebBook. In: PJ Linstrom, WG Mallard, eds. NIST Standard Reference Database Number 69. National Institute of Standards and Technology; 2022.

[58]

Joseph VR. Optimal ratio for data splitting. Stat Anal Data Min ASA Data Sci J. 2022; 15(4): 531-538.

[59]

Morgan HL. The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J Chem Doc. 1965; 5(2): 107-113.

[60]

Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010; 50(5): 742-754.

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

48

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/