Applications of density functional theory to corrosion and corrosion prevention of metals: A review

Dihao Chen , Wenjie Zhou , Yucheng Ji , Chaofang Dong

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e83

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e83 DOI: 10.1002/mgea.83
REVIEW

Applications of density functional theory to corrosion and corrosion prevention of metals: A review

Author information +
History +
PDF

Abstract

Recently, density functional theory (DFT) has been a powerful tool to model the corrosion behaviors of materials, provide insights into the corrosion mechanisms, predict the corrosion performance of materials, and design the corrosion-resistant alloys and organic inhibitors. DFT enables corrosion scientist to fundamentally understand the corrosion behaviors and corrosion mechanisms of materials from the perspective of atomic and electronic structures, combining with the traditional and advanced experimental tests. This review briefly summarizes the main features of DFT calculations and present a comprehensive overview of their typical applications to corrosion and corrosion prevention of metals, involving potential-pH diagrams, hydrogen evolution reaction, anodic dissolution, passivity and passivity breakdown, and organic inhibitor for metals. The paper also reviews the correlations between DFT-computed descriptors and the micro/macro physiochemical parameters of corrosion. Despite the great progress achieved by DFT, there are still some challenges in addressing corrosion issues due to the lack of bridges between the DFT-calculated electronic parameters and the macro corrosion performance of materials. The DFT modeling-experiment-engineering-theory model will be a potential method to clarify and build the links.

Keywords

density functional theory / metal corrosion / modeling

Cite this article

Download citation ▾
Dihao Chen, Wenjie Zhou, Yucheng Ji, Chaofang Dong. Applications of density functional theory to corrosion and corrosion prevention of metals: A review. Materials Genome Engineering Advances, 2025, 3(1): e83 DOI:10.1002/mgea.83

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Marcus P, Maurice V. Atomic level characterization in corrosion studies. Philos Trans R Soc A Math Phys Eng Sci. 2017; 375(2098):20160414.

[2]

Maurice V, Marcus P. Progress in corrosion science at atomic and nanometric scales. Prog Mater Sci. 2018; 95: 132-171.

[3]

Pan J. Studying the passivity and breakdown of duplex stainless steels at micrometer and nanometer scales - the influence of microstructure. Front Mater. 2020; 7: 1-8.

[4]

Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals. Nat Commun. 2018; 9(1):2559.

[5]

Peng J, Chen B, Wang Z, et al. Surface coordination layer passivates oxidation of copper. Nature. 2020; 586(7829): 390-394.

[6]

Wang Y-H, Zheng S, Yang W-M, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature. 2021; 600(7887): 81-85.

[7]

Larsson A, Grespi A, Abbondanza G, et al. The oxygen evolution reaction drives passivity breakdown for Ni-Cr-Mo alloys. Adv Mater. 2023; 35(39):2304621.

[8]

Yang Y, Zhou W, Yin S, et al. One dimensional wormhole corrosion in metals. Nat Commun. 2023; 14(1): 988.

[9]

Dong C, Ji Y, Wei X, et al. Integrated computation of corrosion: modelling, simulation and applications. Corrosion Commun. 2021; 2: 8-23.

[10]

Obot IB, Macdonald DD, Gasem ZM. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corrosion Sci. 2015; 99: 1-30.

[11]

Maurice V, Marcus P. Current developments of nanoscale insight into corrosion protection by passive oxide films. Curr Opin Solid State Mater Sci. 2018; 22(4): 156-167.

[12]

Ke H, Taylor CD. Density functional theory: an essential partner in the integrated computational materials engineering approach to corrosion. Corrosion. 2019; 75(7): 708-726.

[13]

Taylor CD, Ke H. Investigations of the intrinsic corrosion and hydrogen susceptibility of metals and alloys using density functional theory. Corrosion Rev. 2021; 39(3): 177-209.

[14]

Li S, Li C, Wang F. Computational experiments of metal corrosion studies: a review. Mater Today Chem. 2024; 37:101986.

[15]

Hartree DR. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Math Proc Camb Phil Soc. 1928; 24(1): 89-110.

[16]

Fock V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik. 1930; 61(1-2): 126-148.

[17]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964; 136(3B): B864-B871.

[18]

Kohn W, Sham L. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965; 140(4A): A1133-A1138.

[19]

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2006; 124(18): 8207-8215.

[20]

Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992; 45(23): 13244-13249.

[21]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[22]

Kohn W, Sham LJ. Density functional theory. In: Conference Proceedings-Italian Physical Society, Editrice Compositori; 1996: 561-572.

[23]

Orio M, Pantazis DA, Neese F. Density functional theory. Photosynth Res. 2009; 102(2-3): 443-453.

[24]

Cohen AJ, Mori-Sánchez P, Yang W. Challenges for density functional theory. Chem Rev. 2012; 112(1): 289-320.

[25]

Jónsson H, Mills G, Jacobsen KW. Nudged elastic band method for finding minimum energy paths of transitions. In: Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific; 1998: 385-404.

[26]

Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000; 113(22): 9901-9904.

[27]

Steinmann SN, Sautet P, Michel C. Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models. Phys Chem Chem Phys. 2016; 18(46): 31850-31861.

[28]

Basdogan Y, Maldonado AM, Keith JA. Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals. Wiley Interdiscip Rev Comput Mol Sci. 2020; 10(2):e1446.

[29]

Cramer CJ, Truhlar DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev. 1999; 99(8): 2161-2200.

[30]

Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys. 2014; 140(8):084106.

[31]

Garcia-Ratés M, López N. Multigrid-based methodology for implicit solvation models in periodic DFT. J Chem Theor Comput. 2016; 12(3): 1331-1341.

[32]

Lozovoi AY, Alavi A, Kohanoff J, Lynden-Bell RM. Ab initio simulation of charged slabs at constant chemical potential. J Chem Phys. 2001; 115(4): 1661-1669.

[33]

Otani M, Sugino O. First-principles calculations of charged surfaces and interfaces: a plane-wave nonrepeated slab approach. Phys Rev B. 2006; 73(11):115407.

[34]

Lashkari M, Arshadi MR. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects. Chem Phys. 2004; 299(1): 131-137.

[35]

Karlberg GS, Rossmeisl J, Nørskov JK. Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys Chem Chem Phys. 2007; 9(37): 5158-5161.

[36]

English NJ, Waldron CJ. Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys Chem Chem Phys. 2015; 17(19): 12407-12440.

[37]

Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem. 2008; 29(13): 2044-2078.

[38]

GAUSSIAN. Accessed March 16, 2024. https://gaussian.com/

[39]

Materials Studio. Accessed March 16, 2024. https://www.3ds.com/products/biovia/materials-studio

[40]

Enkovaara J, Rostgaard C, Mortensen JJ, et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter. 2010; 22(25):253202.

[41]

SeqQuest. Accessed March 16, 2024. https://dft.sandia.gov/quantum-electronic-structure/

[42]

Neese F. Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci. 2018; 8(1):e1327.

[43]

Jia W, Cao Z, Wang L, et al. The analysis of a plane wave pseudopotential density functional theory code on a GPU machine. Comput Phys Commun. 2013; 184(1): 9-18.

[44]

Valiev M, Bylaska EJ, Govind N, et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun. 2010; 181(9): 1477-1489.

[45]

VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun. 2005; 167(2): 103-128.

[46]

Smidstrup S, Markussen T, Vancraeyveld P, et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys Condens Matter. 2020; 32(1):015901.

[47]

José MS, Emilio A, Julian DG, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter. 2002; 14(11): 2745-2779.

[48]

Blaha P, Schwarz K, Tran F, Laskowski R, Madsen GKH, Marks LD. WIEN2k: an APW+ lo program for calculating the properties of solids. J Chem Phys. 2020; 152(7):074101.

[49]

Stevanovi V, Lany S, Zhang X, Zunger A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys Rev B. 2012; 85(11):115104.

[50]

Persson KA, Waldwick B, Lazic P, Ceder G. Prediction of solid-aqueous equilibria: scheme to combine first-principles calculations of solids with experimental aqueous states. Phys Rev B. 2012; 85(23):235438.

[51]

Huang LF, Rondinelli JM. Electrochemical phase diagrams for Ti oxides from density functional calculations. Phys Rev B. 2015; 92(24):245126.

[52]

Oba F, Choi M, Togo A, Tanaka I. Point defects in ZnO: an approach from first principles. Sci Technol Adv Mater. 2011; 12(3):034302.

[53]

Xu AN, Dong CF, Wei X, Li XG, Macdonald DD. DFT and photoelectrochemical studies of point defects in passive films on copper. J Electroanal Chem. 2019; 834: 216-222.

[54]

Huang X, Costa D, Diawara B, Maurice V, Marcus P. Atomistic insights on enhanced passivity: DFT study of substitutional Mo on Cr2O3 and Fe2O3 surfaces. Corrosion Sci. 2023; 224:111543.

[55]

Pang Q, DorMohammadi H, Isgor OB, Árnadóttir L. Density functional theory study on the effect of OH and Cl adsorption on the surface structure of α-Fe2O3. Comput Theor Chem. 2017; 1100: 91-101.

[56]

Ke H, Frankel GS, Taylor CD. Application of the chloride susceptibility index to study the effects of Ni, Cr, Mn and Mo on the repassivation of stainless steels. J Electrochem Soc. 2020; 167(13):131510.

[57]

Kumar D, Jain N, Jain V, Rai B. Amino acids as copper corrosion inhibitors: a density functional theory approach. Appl Surf Sci. 2020; 514:145905.

[58]

Chen D, Dong C, Ma Y, Ji Y, Li X. Revealing the inner rules of PREN from electronic aspect by first-principles calculations. Corrosion Sci. 2021; 189:109561.

[59]

Chen X, Chen Y, Cui J, Li Y, Liang Y, Cao G. Molecular dynamics simulation and DFT calculation of “green” scale and corrosion inhibitor. Comput Mater Sci. 2021; 188:110229.

[60]

Luo X, Dong C, Xi Y, et al. Computational simulation and efficient evaluation on corrosion inhibitors for electrochemical etching on aluminum foil. Corrosion Sci. 2021; 187:109492.

[61]

Razali NZK, Wan Hassan WNS, Sheikh Mohd Ghazali SAI, Mohd Shotor SN, Dzulkifli NN. DFT, Fukui indices, and molecular dynamic simulation studies on corrosion inhibition characteristics: a review. Chem Pap. 2024; 78(2): 715-731.

[62]

Huda MN, Ray AK. Molecular hydrogen adsorption and dissociation on the plutonium (111) surface. Phys Rev B. 2005; 72(8):085101.

[63]

Shi C, Sun L, Qin H, Wang X, Li L, Hu J. Adsorption properties of CO molecule on the orthorhombic structure LaMnO3 (010) surface. Comput Mater Sci. 2015; 98: 83-87.

[64]

Li F, Shi C, Wang X, Cui G, Wang D, Chen L. The important role of oxygen defect for NO gas-sensing behavior of α-Fe2O3 (0 0 1) surface: predicted by density functional theory. Comput Mater Sci. 2018; 146: 1-8.

[65]

Kahn A. Fermi level, work function and vacuum level. Mater Horiz. 2016; 3(1): 7-10.

[66]

Li F, Wang Z, Jiang Y, et al. DFT study on the adsorption of deprotonated benzotriazole on the defective copper surfaces. Corrosion Sci. 2021; 186:109458.

[67]

Lin L, Jacobs R, Ma T, et al. Fundamentals, measurement, calculation, engineering, and applications. Phys Rev Appl. 2023; 19(3):037001.

[68]

Pourbaix M. Thermodynamique des solutions aqueuses diluées. Meinema; 1945.

[69]

Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. NACE; 1966.

[70]

Delahay P, Pourbaix M, Van Rysselberghe P. Potential-pH diagrams. J Chem Educ. 1950; 27(12):683.

[71]

Dean JA. Lange's handbook of chemistry. Adv Manuf Process. 2010; 5(4): 687-688.

[72]

Huang LF, Scully JR, Rondinelli JM. Modeling corrosion with first-principles electrochemical phase diagrams. Annu Rev Mater Res. 2019; 49(1): 53-77.

[73]

Hansen HA, Rossmeisl J, Nrskov JK. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys. 2008; 10(25): 3722-3730.

[74]

Fazio G, Ferrighi L, Di Valentin C. Boron-doped graphene as active electrocatalyst for oxygen reduction reaction at a fuel-cell cathode. J Catal. 2014; 318: 203-210.

[75]

Exner KS, Anton J, Jacob T, Over H. Chlorine evolution reaction on RuO2(110): Ab initio atomistic thermodynamics study - Pourbaix diagrams. Electrochim Acta. 2014; 120: 460-466.

[76]

Exner K. Constrained ab initio thermodynamics: transferring the concept of surface Pourbaix diagrams in electrocatalysis to electrode materials in lithium-ion batteries. Chemelectrochem. 2017; 4(12): 1-8.

[77]

Castelli IE, Thygesen KS, Jacobsen KW. Calculated Pourbaix diagrams of cubic perovskites for water splitting: stability against corrosion. Top Catal. 2014; 57(1-4): 265-272.

[78]

Williams KS, Labukas JP, Rodriguez-Santiago V, Andzelm JW. First principles modeling of water dissociation on Mg(0001) and development of a Mg surface Pourbaix diagram. Corrosion. 2014; 71(2): 209-223.

[79]

Zeng ZH, Chan MKY, Zhao ZJ, Kubal J, Fan DX, Greeley J. Towards first principles-based prediction of highly accurate electrochemical Pourbaix diagrams. J Phys Chem C. 2015; 119(32): 18177-18187.

[80]

Huang L, Rondinelli JM. Electrochemical phase diagrams of Ni from ab initio simulations: role of exchange interactions on accuracy. J Phys Condens Matter. 2017; 29(47):475501.

[81]

Walters LN, Huang L-F, Rondinelli JM. First-principles-based prediction of electrochemical oxidation and corrosion of copper under multiple environmental factors. J Phys Chem C. 2021; 125(25): 14027-14038.

[82]

Huang LF, Hutchison MJ, Santucci RJ, Scully JR, Rondinelli JM. Improved electrochemical phase diagrams from theory and experiment: the Ni-water system and its complex compounds. J Phys Chem C. 2017; 121(18): 9782-9789.

[83]

Huang LF, Hung HM, Cwalina KL, Scully JR, Rondinelli JM. Understanding electrochemical stabilities of Ni-based nanofilms from a comparative theory-experiment approach. J Phys Chem C. 2019; 123(47): 28925-28940.

[84]

Huang LF, Rondinelli JM. Reliable electrochemical phase diagrams of magnetic transition metals and related compounds from high-throughput ab initio calculations. npj Mater Degrad. 2019; 3(1): 26.

[85]

Ding R, Shang J-X, Wang F-H, Chen Y. Electrochemical Pourbaix diagrams of NiTi alloys from first-principles calculations and experimental aqueous states. Comput Mater Sci. 2018; 143: 431-438.

[86]

Dong X, Wei B, Legut D, Zhang H, Zhang R. Electrochemical Pourbaix diagrams of Mg-Zn alloys from first-principles calculations and experimental thermodynamic data. Phys Chem Chem Phys. 2021; 23(35): 19602-19610.

[87]

Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy. Electrochim Acta. 2004; 49(22-23): 3957-3964.

[88]

Wang Z, Carrière C, Seyeux A, Zanna S, Mercier D, Marcus P. Thermal stability of surface oxides on nickel alloys (NiCr and NiCrMo) investigated by XPS and ToF-SIMS. Appl Surf Sci. 2022; 576:151836.

[89]

Eidhagen J, Larsson A, Preobrajenski A, Delblanc A, Lundgren E, Pan J. Synchrotron XPS and electrochemical study of aging effect on passive film of Ni alloys. J Electrochem Soc. 2023; 170(2):021506.

[90]

Meng G, Sun F, Shao Y, et al. Influence of nano-scale twins (NT) structure on passive film formed on nickel. Electrochim Acta. 2010; 55(7): 2575-2581.

[91]

Monaco L, Sodhi RNS, Palumbo G, Erb U. XPS study on the passivity of coarse-grained polycrystalline and electrodeposited nanocrystalline nickel-iron (NiFe) alloys. Corrosion Sci. 2020; 176:108902.

[92]

Lutton K, Han J, Ha HM, Sur D, Romanovskaia E, Scully JR. Passivation of Ni-Cr and Ni-Cr-Mo alloys in low and high pH sulfate solutions. J Electrochem Soc. 2023; 170(2):021507.

[93]

Nørskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005; 152(3): J23.

[94]

Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016; 45(6): 1529-1541.

[95]

Li C, Baek JB. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega. 2020; 5(1): 31-40.

[96]

Chen M, Smart TJ, Wang S, et al. The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. J Mater Chem A. 2020; 8(18): 8783-8812.

[97]

Liao X, Lu R, Xia L, et al. Density functional theory for electrocatalysis. Energy Environ Mater. 2022; 5(1): 157-185.

[98]

Zheng Y, Jiao Y, Jaroniec M, Qiao SZ. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed. 2015; 54(1): 52-65.

[99]

Safizadeh F, Ghali E, Houlachi G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - a review. Int J Hydrogen Energy. 2015; 40(1): 256-274.

[100]

Zheng Y, Jiao Y, Vasileff A, Qiao S-Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew Chem Int Ed. 2018; 57(26): 7568-7579.

[101]

Lasia A. Mechanism and kinetics of the hydrogen evolution reaction. Int J Hydrogen Energy. 2019; 44(36): 19484-19518.

[102]

Nilsson A, Pettersson LGM, Hammer B, Bligaard T, Christensen CH, Nørskov JK. The electronic structure effect in heterogeneous catalysis. Catal Lett. 2005; 100(3-4): 111-114.

[103]

Santos E, Schmickler W. d-Band catalysis in electrochemistry. ChemPhysChem. 2006; 7(11): 2282-2285.

[104]

Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015; 44(8): 2060-2086.

[105]

Yuwono JA, Birbilis N, Williams KS, Medhekar NV. Electrochemical stability of magnesium surfaces in an aqueous environment. J Phys Chem C. 2016; 120(47): 26922-26933.

[106]

Yuwono JA, Birbilis N, Taylor CD, Williams KS, Samin AJ, Medhekar NV. Aqueous electrochemistry of the magnesium surface: thermodynamic and kinetic profiles. Corrosion Sci. 2019; 147: 53-68.

[107]

Würger T, Feiler C, Vonbun-Feldbauer GB, Zheludkevich ML, Meißner RH. A first-principles analysis of the charge transfer in magnesium corrosion. Sci Rep. 2020; 10(1):15006.

[108]

Ng M-F, Blackwood DJ, Jin H, Tan TL. First-principles investigation into the contributions of ORR and HER in magnesium corrosion. J Electrochem Soc. 2023; 170(7):071501.

[109]

Sun H, Su G, Zhang Y, et al. First-principles modeling of the anodic and cathodic polarization to predict the corrosion behavior of Mg and its alloys. Acta Mater. 2023; 244:118562.

[110]

Williams KS, Rodriguez-Santiago V, Andzelm JW. Modeling reaction pathways for hydrogen evolution and water dissociation on magnesium. Electrochim Acta. 2016; 210: 261-270.

[111]

Taylor CD. A first-principles surface reaction kinetic model for hydrogen evolution under cathodic and anodic conditions on magnesium. J Electrochem Soc. 2016; 163(9): C602-C608.

[112]

Luo Z, Xu J, Wang Y, et al. Theoretical analysis of the galvanic corrosion behavior of Mg-Ge binary alloy. J Electrochem Soc. 2019; 166(13): C421-C427.

[113]

Wang Y, Xie T, Luo Z, Zhu H, Zeng X. First-principles study of water decomposition and hydrogen evolution on MgZn2 Laves phase. Comput Mater Sci. 2021; 196:110532.

[114]

Xie T, Zhao P, Chen Y, et al. Investigation on the corrosion behavior of single-phase and binary-phase Mg-Sc alloys: an experimental and first-principles study. Mater Char. 2021; 179:111294.

[115]

Taylor C, Kelly RG, Neurock M. Theoretical analysis of the nature of hydrogen at the electrochemical interface between water and a Ni(111) single-crystal electrode. J Electrochem Soc. 2007; 154(3): F55.

[116]

Yule LC, Shkirskiy V, Aarons J, et al. Nanoscale active sites for the hydrogen evolution reaction on low carbon steel. J Phys Chem C. 2019; 123(39): 24146-24155.

[117]

Esmaily M, Svensson JE, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci. 2017; 89: 92-193.

[118]

Curioni M. The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging. Electrochim Acta. 2014; 120: 284-292.

[119]

Salleh SH, Thomas S, Yuwono JA, Venkatesan K, Birbilis N. Enhanced hydrogen evolution on Mg(OH)2 covered Mg surfaces. Electrochim Acta. 2015; 161: 144-152.

[120]

Cain TW, Gonzalez-Afanador I, Birbilis N, Scully JR. The role of surface films and dissolution products on the negative difference effect for magnesium: comparison of Cl- versus Cl- free solutions. J Electrochem Soc. 2017; 164(6): C300-C311.

[121]

Taheri M, Kish JR, Birbilis N, Danaie M, McNally EA, McDermid JR. Towards a physical description for the origin of enhanced catalytic activity of corroding magnesium surfaces. Electrochim Acta. 2014; 116: 396-403.

[122]

Lysne D, Thomas S, Hurley MF, Birbilis N. On the Fe enrichment during anodic polarization of Mg and its impact on hydrogen evolution. J Electrochem Soc. 2015; 162(8): C396-C402.

[123]

Fajardo S, Frankel GS. Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium. Electrochim Acta. 2015; 165: 255-267.

[124]

Lamaka SV, Höche D, Petrauskas RP, Blawert C, Zheludkevich ML. A new concept for corrosion inhibition of magnesium: suppression of iron re-deposition. Electrochem Commun. 2016; 62: 5-8.

[125]

Mercier D, Światowska J, Zanna S, Seyeux A, Marcus P. Role of segregated iron at grain boundaries on Mg corrosion. J Electrochem Soc. 2018; 165(2): C42-C49.

[126]

Michailidou E, McMurray HN, Williams G. Quantifying the role of transition metal electrodeposition in the cathodic activation of corroding magnesium. J Electrochem Soc. 2018; 165(5): C195-C205.

[127]

Surendralal S, Todorova M, Finnis MW, Neugebauer J. First-principles approach to model electrochemical reactions: understanding the fundamental mechanisms behind Mg corrosion. Phys Rev Lett. 2018; 120(24):246801.

[128]

Yuwono JA, Taylor CD, Frankel GS, Birbilis N, Fajardo S. Understanding the enhanced rates of hydrogen evolution on dissolving magnesium. Electrochem Commun. 2019; 104:106482.

[129]

Li Y, Yang Y, Wei Y, Zhang P. Influences of Al doping on the electronic structure of Mg(0001) and dissociation properties of H2. Phys Lett A. 2010; 374(7): 975-980.

[130]

Limmer KR, Williams KS, Labukas JP, Andzelm JW. First principles modeling of cathodic reaction thermodynamics in dilute magnesium alloys. Corrosion. 2017; 73(5): 506-517.

[131]

Sumer A, Chaudhuri S. A first principles investigation of corrosion chemistry of common elemental impurities in Mg-Al alloys. Corrosion. 2017; 73(5): 596-604.

[132]

Ma H, Wu L, Liu C, et al. First-principles modeling of the hydrogen evolution reaction and its application in electrochemical corrosion of Mg. Acta Mater. 2020; 183: 377-389.

[133]

Yuwono JA, Birbilis N, Liu R, Ou Q, Bao Q, Medhekar NV. Aqueous electrochemical activity of the Mg surface: the role of group 14 and 15 microalloying elements. J Electrochem Soc. 2017; 164(13): C918-C929.

[134]

Zhao P, Xie T, Ying T, Zhu H, Zeng X. Role of alloyed Sc on the corrosion behavior of Mg. Metall Mater Trans A. 2022; 53(3): 741-746.

[135]

Zhang M, Hector LG, Guo Y, Liu M, Qi L. First-principles search for alloying elements that increase corrosion resistance of Mg with second-phase particles of transition metal impurities. Comput Mater Sci. 2019; 165: 154-166.

[136]

Wang Y, Tang Q, Xu X, et al. Accelerated discovery of magnesium intermetallic compounds with sluggish corrosion cathodic reactions through active learning and DFT calculations. Acta Mater. 2023; 255:119063.

[137]

Martin ML, Sofronis P. Hydrogen-induced cracking and blistering in steels: a review. J Nat Gas Sci Eng. 2022; 101:104547.

[138]

Dong L, Wang S, Wu G, et al. Application of atomic simulation for studying hydrogen embrittlement phenomena and mechanism in iron-based alloys. Int J Hydrogen Energy. 2022; 47(46): 20288-20309.

[139]

Counts WA, Wolverton C, Gibala R. First-principles energetics of hydrogen traps in α-Fe: point defects. Acta Mater. 2010; 58(14): 4730-4741.

[140]

Jiang D, Carter EA. Diffusion of interstitial hydrogen into and through bcc Fe from first principles. Phys Rev B. 2004; 70:064102.

[141]

Wang C, Cheng L, Sun X, Zhang X, Liu J, Wu K. First-principle study on the effects of hydrogen in combination with alloy solutes on local mechanical properties of steels. Int J Hydrogen Energy. 2022; 47(52): 22243-22260.

[142]

Geng WT, Wan L, Du J-P, et al. Hydrogen bubble nucleation in α-iron. Scripta Mater. 2017; 134: 105-109.

[143]

Du YA, Ismer L, Rogal J, Hickel T, Neugebauer J, Drautz R. First-principles study on the interaction of H interstitials with grain boundaries in α-Fe and γ-Fe. Phys Rev B. 2011; 84(14):144121.

[144]

Xu Z, Cheng L, Xia K, Hu C, Wu K. Effect of alloying solutes on hydrogen segregation at pure iron Σ3(111) grain boundary: first-principles calculation. Int J Hydrogen Energy. 2024; 84: 321-333.

[145]

Li X, Chen L, Liu H, Mi Z, Shi C, Qiao L. Atom doping in α-Fe2O3 thin films to prevent hydrogen permeation. Int J Hydrogen Energy. 2019; 44(5): 3221-3229.

[146]

Ito K, Tanaka Y, Tsutsui K, Omura T. Effect of Mo addition on hydrogen segregation at α-Fe grain boundaries: a first-principles investigation of the mechanism by which Mo addition improves hydrogen embrittlement resistance in high-strength steels. Comput Mater Sci. 2023; 218:111951.

[147]

Song K, Cao S, Bao Y, Qian P, Su Y. Designing hydrogen embrittlement-resistant grain boundary in steel by alloying elements segregation: first-principles calculations. Appl Surf Sci. 2024; 656:159684.

[148]

Zhang B, Su J, Wang M, et al. Atomistic insight into hydrogen trapping at MC/BCC-Fe phase boundaries: the role of local atomic environment. Acta Mater. 2021; 208:116744.

[149]

Zhang S, Qi L, Liu S, et al. Synergistic effects of Nb and Mo on hydrogen-induced cracking of pipeline steels: a combined experimental and numerical study. J Mater Sci Technol. 2023; 158: 156-170.

[150]

Yang MZ, Luo JL, Patchet BM. Correlation of hydrogen-facilitated pitting of AISI 304 stainless steel to semiconductivity of passive films. Thin Solid Films. 1999; 354(1-2): 142-147.

[151]

Yang MZ, Yang Q, Luo JL. Effects of hydrogen on passive film and corrosion of aisi 310 stainless steel. Corrosion Sci. 1999; 41(4): 741-745.

[152]

Mi Z, Chen L, Shi C, et al. Prevent hydrogen damage in α-Cr2O3/α-Fe2O3 (0 0 0 1) interface. Appl Surf Sci. 2019; 475: 294-301.

[153]

Örnek C, Mansoor M, Larsson A, et al. The causation of hydrogen embrittlement of duplex stainless steel: phase instability of the austenite phase and ductile-to-brittle transition of the ferrite phase - synergy between experiments and modelling. Corrosion Sci. 2023; 217:111140.

[154]

Lu X, Ma Y, Ma Y, et al. Unravelling the effect of F phase on hydrogen-assisted intergranular cracking in nickel-based Alloy 725: experimental and DFT study. Corrosion Sci. 2023; 225:111569.

[155]

Zhang Y, Ren Y, Guo Q, Li X, Xu J, Shoji T. Experiments and DFT calculations on the effects of interstitial hydrogen on Ti corrosion products in high temperature water. Corrosion Sci. 2024; 232:112014.

[156]

Xu Y, Toda H, Shimizu K, et al. Suppressed hydrogen embrittlement of high-strength Al alloys by Mn-rich intermetallic compound particles. Acta Mater. 2022; 236:118110.

[157]

Trasatti S. The absolute electrode potential: an explanatory note. Pure Appl Chem. 1986; 58(7): 955-966.

[158]

Trasatti S. The concept and physical meaning of absolute electrode potential. A reassessment. J Electroanal Chem. 1982; 139: 1-13.

[159]

Gomer R, Tryson G. An experimental determination of absolute half-cell EMF’s and single ion free energies of solvation. J Chem Phys. 1977; 66(10): 4413-4424.

[160]

Hansen WN, Kolb DM. The work function of emersed electrodes. J Electroanal Chem Interfacial Electrochem. 1979; 100(1-2): 493-500.

[161]

Hansen WN, Hansen GJ. Absolute half-cell potential: a simple direct measurement. Phys Rev A. 1987; 36(3): 1396-1402.

[162]

Kötz ER, Neff H, Müller K. A UPS, XPS and work function study of emersed silver, platinum and gold electrodes. J Electroanal Chem Interfacial Electrochem. 1986; 215(1-2): 331-344.

[163]

Trasatti S. Structure of the metal/electrolyte solution interface: new data for theory. Electrochim Acta. 1991; 36(11-12): 1659-1667.

[164]

Schmickler W. Electronic effects in the electric double layer. Chem Rev. 1996; 96(8): 3177-3200.

[165]

Stratmann M, Bohnenkamp K, Ramchandran T. The influence of copper upon the atmospheric corrosion of iron. Corrosion Sci. 1987; 27(9): 905-926.

[166]

Rohwerder M, Turcu F. High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP). Electrochim Acta. 2008; 53(2): 290-299.

[167]

Melitz W, Jian S, Kummel AC, Lee S. Kelvin probe force microscopy and its application. Surf Sci Rep. 2011; 66: 1-27.

[168]

Guillaumin V, Schmutz P, Frankel GS. Characterization of corrosion interfaces by the scanning Kelvin probe force microscopy technique. J Electrochem Soc. 2001; 148(5): B163.

[169]

Leblanc PP, Frankel GS. Investigation of filiform corrosion of epoxy-coated 1045 carbon steel by scanning Kelvin probe force microscopy. J Electrochem Soc. 2004; 151(3): B105.

[170]

Sathirachinda N, Pettersson R, Wessman S, Pan J. Study of nobility of chromium nitrides in isothermally aged duplex stainless steels by using SKPFM and SEM/EDS. Corrosion Sci. 2010; 52(1): 179-186.

[171]

Birbilis N, Cavanaugh MK, Kovarik L, Buchheit RG. Nano-scale dissolution phenomena in Al-Cu-Mg alloys. Electrochem Commun. 2008; 10(1): 32-37.

[172]

Ralston KD, Birbilis N, Cavanaugh MK, Weyland M, Muddle BC, Marceau R. Role of nanostructure in pitting of Al-Cu-Mg alloys. Electrochim Acta. 2010; 55(27): 7834-7842.

[173]

Stratmann M. The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers—a new experimental technique. Corrosion Sci. 1987; 27(8): 869-872.

[174]

Schmutz P, Frankel GS. Characterization of AA2024-T3 by scanning Kelvin probe force microscopy. J Electrochem Soc. 1998; 145(7): 2285-2295.

[175]

Sarvghad-Moghaddam M, Parvizi R, Davoodi A, Haddad-Sabzevar M, Imani A. Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM-EDS and AFM-SKPFM. Corrosion Sci. 2014; 79: 148-158.

[176]

Mishra P, Kumar P, Neelakantan L, Adlakha I. First-principles prediction of electrochemical polarization and mechanical behavior in Mg based intermetallics. Comput Mater Sci. 2022; 214:111667.

[177]

Zuo E, Dou X, Chen Y, Zhu W, Du J, Mao A. Electronic work function, surface energy and electronic properties of binary Mg-Y and Mg- Al alloys: a DFT study. Surf Sci. 2021; 712:121880.

[178]

Jian W, Wang SQ. Surface energy and work function of fcc and bcc crystals: density functional study. Surf Sci. 2014; 630: 216-224.

[179]

Zhao J, Xu Y, Liu S, Ding X. The effect of oxygen-containing species on corrosion behavior of Ta (110) surface: a DFT study with an experimental verification. Appl Surf Sci. 2022; 586:152810.

[180]

Hou Y, Wang J, Liu L, Li G, Zhai D. Mechanism of pitting corrosion induced by inclusions in Al-Ti-Mg deoxidized high strength pipeline steel. Micron. 2020; 138:102898.

[181]

Cao Y, Li G, Hou Y, Moelans N, Guo M. DFT study on the mechanism of inclusion-induced initial pitting corrosion of Al-Ti-Ca complex deoxidized steel with Ce treatment. Phys B Condens Matter. 2019; 558: 10-19.

[182]

Jin H, Blackwood DJ, Wang Y, Ng M-F, Tan TL. First-principles study of surface orientation dependent corrosion of BCC iron. Corrosion Sci. 2022; 196:110029.

[183]

Peng Z, Chen Z, Gong HR. Chlorine adsorption on Mg, Ca, and MgCa surfaces. Mater Sci Eng C. 2013; 33(7): 3826-3831.

[184]

Ao M, Ji Y, Yi P, et al. Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al-Zn-Mg alloy. Int J Miner Metall Mater. 2023; 30(1): 112-121.

[185]

Qin Y-F, Wang S-Q. Ab-initio study of the role of Mg2Si and Al2CuMg phases in electrochemical corrosion of Al alloys. J Electrochem Soc. 2015; 162(9): C503-C508.

[186]

Örnek C, Liu M, Pan J, Jin Y, Leygraf C. Volta potential evolutionof intermetallics in aluminum alloy microstructure under thin aqueous adlayers: a combined DFT and experimental study. Top Catal. 2018; 61(9-11): 1169-1182.

[187]

Ji Y, Li N, Cheng Z, et al. Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data. npj Mater Degrad. 2022; 6(1): 83.

[188]

Li N, Dong C, Wei X, Man C, Li X, Cao J. Scanning Kelvin probe force microscopy and density functional theory studies on the surface potential of the intermetallics in AA7075-T6 alloys. J Mater Eng Perform. 2019; 28(7): 4289-4301.

[189]

Jin Y, Liu M, Zhang C, Leygraf C, Wen L, Pan J. First-principle calculation of Volta potential of intermetallic particles in aluminum alloys and practical implications. J Electrochem Soc. 2017; 164(9): C465-C473.

[190]

Huang Q, He R, Wang C, Tang X. Microstructure, corrosion and mechanical properties of TiC particles/Al-5Mg composite fillers for tungsten arc welding of 5083 aluminum alloy. Materials. 2019; 12(18):3029.

[191]

Luo Z, Zhu H, Ying T, Li D, Zeng X. First principles calculations on the influence of solute elements and chlorine adsorption on the anodic corrosion behavior of Mg (0001) surface. Surf Sci. 2018; 672-673: 68-74.

[192]

Yuwono JA, Birbilis N, Williams KS, Medhekar NV. Electrochemical stability of Mg surfaces in an aqueous environment. J Phys Chem C. 2016; 120(47): 26922-26933.

[193]

Ji Y, Dong C, Kong D, Li X. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting. J Mater Sci Technol. 2020; 46: 145-155.

[194]

Zhu Y, Poplawsky JD, Li S, et al. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys. Acta Mater. 2020; 189: 204-213.

[195]

Liu M, Jin Y, Pan J, Leygraf C. Co-adsorption of H2O, OH, and Cl on aluminum and intermetallic surfaces and its effects on the work function studied by DFT calculations. Molecules. 2019; 24(23):4284.

[196]

Jun Y, Norio N. First-principles study of chlorine adsorption on clean Al(111). Mater Trans. 2017; 58(10): 1356-1363.

[197]

Florian G, Tanglaw R, Katrin FT, Axel G. Change of the work function of platinum electrodes induced by halide adsorption. Beilstein J Nanotechnol. 2014; 5: 152-161.

[198]

Migani A, Sousa C, Illas F. Chemisorption of atomic chlorine on metal surfaces and the interpretation of the induced work function changes. Surf Sci. 2005; 574(2-3): 297-305.

[199]

Song G-L, Mishra R, Xu Z. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem Commun. 2010; 12(8): 1009-1012.

[200]

Ma H, Chen X-Q, Wang R, Dong S, Wei J, Ke W. First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments. Acta Mater. 2017; 130: 137-146.

[201]

Xu A, Dong C, Wu A, et al. Plasma-modified C-doped Co3O4 nanosheets for the oxygen evolution reaction designed by Butler-Volmer and first-principle calculations. J Mater Chem A. 2019; 7(9): 4581-4595.

[202]

Taylor CD. The transition from metal-metal bonding to metal-solvent interactions during a dissolution event as assessed from electronic structure. Chem Phys Lett. 2009; 469(1-3): 99-103.

[203]

Sharma S, Zagalskaya A, Weitzner SE, et al. Metal dissolution from first principles: potential-dependent kinetics and charge transfer. Electrochim Acta. 2023; 437:141443.

[204]

Policastro SA, Carnahan JC, Zangari G, et al. Surface diffusion and dissolution kinetics in the electrolyte-metal interface. J Electrochem Soc. 2010; 157(10): C328.

[205]

Gileadi E. Can an electrode reaction occur without electron transfer across the metal/solution interface? Chem Phys Lett. 2004; 393(4-6): 421-424.

[206]

Gileadi E. The enigma of metal deposition. J Electroanal Chem. 2011; 660(2): 247-253.

[207]

Gileadi E, Kirowa-Eisner E. Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion. Corrosion Sci. 2005; 47(12): 3068-3085.

[208]

Gileadi E. Charge and mass transfer across the metal/solution interface. Israel J Chem. 2008; 48(3-4): 121-131.

[209]

Ke H, Taylor CD. DFT-based calculation of dissolution activation energy and kinetics of Ni-Cr alloys. J Electrochem Soc. 2020; 167(13):131508.

[210]

Helmholtz H. Studien über electrische Grenzschichten. Ann Phys. 1879; 243(1879): 337-382.

[211]

Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte. Journal de Physique Théorique et Appliquée. 1910; 9(1): 457-468.

[212]

Chapman DL. LI. A contribution to the theory of electrocapillarity. London Edinburgh Dublin Philos Mag J Sci. 1913; 25(148): 475-481.

[213]

Stern O. Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie. 1924; 30(21-22): 508-516.

[214]

Groß A, Sakong S. Modelling the electric double layer at electrode/electrolyte interfaces. Curr Opin Electrochem. 2019; 14: 1-6.

[215]

Magnussen OM, Groß A. Toward an atomic-scale understanding of electrochemical interface structure and dynamics. J Am Chem Soc. 2019; 141(12): 4777-4790.

[216]

Delley MF, Nichols EM, Mayer JM. Interfacial acid-base equilibria and electric fields concurrently probed by in situ surface-enhanced infrared spectroscopy. J Am Chem Soc. 2021; 143(28): 10778-10792.

[217]

Yang X-H, Zhuang Y-B, Zhu J-X, Le J-B, Cheng J. Recent progress on multiscale modeling of electrochemistry. Wiley Interdiscip Rev Comput Mol Sci. 2022; 12(1):e1559.

[218]

Izvekov S, Voth GA. Ab initio molecular dynamics simulation of the Ag(111)-water interface. J Chem Phys. 2001; 115(15): 7196-7206.

[219]

Izvekov S, Mazzolo A, VanOpdorp K, Voth GA. Ab initio molecular dynamics simulation of the Cu(110)-water interface. J Chem Phys. 2001; 114(7): 3248-3257.

[220]

Meng S, Wang EG, Gao S. Water adsorption on metal surfaces: a general picture from density functional theory studies. Phys Rev B. 2004; 69(19):195404.

[221]

Sakong S, Forster-Tonigold K, Groß A. The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. J Chem Phys. 2016; 144(19):194701.

[222]

Le J, Iannuzzi M, Cuesta A, Cheng J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics. Phys Rev Lett. 2017; 119(1):016801.

[223]

Chen A, Le J-B, Kuang Y, Cheng J. Modeling stepped Pt/water interfaces at potential of zero charge with ab initio molecular dynamics. J Chem Phys. 2022; 157(9):094702.

[224]

Li X-Y, Chen A, Yang X-H, Zhu J-X, Le J-B, Cheng J. Linear correlation between water adsorption energies and Volta potential differences for metal/water interfaces. J Phys Chem Lett. 2021; 12(30): 7299-7304.

[225]

Le J-B, Chen A, Li L, et al. Modeling electrified Pt(111)-Had/water interfaces from ab initio molecular dynamics. JACS Au. 2021; 1(5): 569-577.

[226]

Bonnet N, Morishita T, Sugino O, Otani M. First-principles molecular dynamics at a constant electrode potential. Phys Rev Lett. 2012; 109(26):266101.

[227]

Sundararaman R, Goddard WA , Arias TA. Grand canonical electronic density-functional theory: algorithms and applications to electrochemistry. J Chem Phys. 2017; 146(11):114104.

[228]

Bouzid A, Pasquarello A. Atomic-scale simulation of electrochemical processes at electrode/water interfaces under referenced bias potential. J Phys Chem Lett. 2018; 9(8): 1880-1884.

[229]

Gao G, Wang L-W. Substantial potential effects on single-atom catalysts for the oxygen evolution reaction simulated via a fixed-potential method. J Catal. 2020; 391: 530-538.

[230]

Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T. Structure of the water/platinum interface--a first principles simulation under bias potential. Phys Chem Chem Phys. 2008; 10(25): 3609-3612.

[231]

Réocreux R, Girel É, Clabaut P, et al. Reactivity of shape-controlled crystals and metadynamics simulations locate the weak spots of alumina in water. Nat Commun. 2019; 10(1):3139.

[232]

Macdonald DD. Passivity-the key to our metals-based civilization. Pure Appl Chem. 1999; 71(6): 951-978.

[233]

Macdonald DD, Lei X. Theoretical interpretation of anion size effects in passivity breakdown. J Electrochem Soc. 2016; 163(13): C738-C744.

[234]

McCafferty E. A surface charge model of corrosion pit initiation and of protection by surface alloying. J Electrochem Soc. 1999; 146(8): 2863-2869.

[235]

Parks GA, Bruyn P. The zero point of charge of oxides. J Phys Chem. 1962; 66(6): 967-973.

[236]

Kosmulski M. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks' review. Adv Colloid Interface Sci. 2016; 238: 1-61.

[237]

Chen D, Li M, Yue X, et al. Correlation between pitting susceptibility and surface acidity, point of zero charge of passive film on aluminum: influence of alloying elements. Corrosion Sci. 2024; 227:111726.

[238]

Butler MA, Ginley DS. Temperature dependence of flatband potentials at semiconductor-electrolyte interfaces. Nature. 1978; 273(5663): 524-525.

[239]

Nozik AJ. Photoelectrochemistry: applications to solar energy conversion. Annu Rev Phys Chem. 1978; 29(1): 189-222.

[240]

Ginley DS, Butler MA. Flatband potential of cadmium sulfide (CdS) photoanodes and its dependence on surface ion effects. J Electrochem Soc. 1979; 125(12): 1968-1974.

[241]

Xu Y, Schoonen M. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral. 2000; 85(3-4): 543-556.

[242]

Cao W. Using and validation of the DFT method for oxygen adsorbed on the iron (100) surface. Miner Process Extr Metall. 2010; 119(2): 67-70.

[243]

Chen Z, Nong Y, Chen J, Chen Y, Yu B. A DFT study on corrosion mechanism of steel bar under water-oxygen interaction. Comput Mater Sci. 2020; 171:109265.

[244]

Taylor CD. Oxygen induced transformations of the δ-Pu(111) surface. Surf Sci. 2013; 618: 101-108.

[245]

Olatunji-Ojo O, Taylor CD. Changes in valence, coordination and reactivity that occur upon oxidation of fresh metal surfaces. Phil Mag. 2013; 93(34): 4286-4310.

[246]

Pang Q, DorMohammadi H, Isgor OB, Árnadóttir L. The effect of surface vacancies on the interactions of Cl with a α-Fe2O3 (0001) surface and the role of Cl in depassivation. Corrosion Sci. 2019; 154: 61-69.

[247]

Yin X, Wang H, Han E. Cl-induced passivity breakdown in α-Fe2O3 (0001), α-Cr2O3 (0001), and their interface: a DFT study. J Mater Sci Technol. 2022; 129: 70-78.

[248]

Xu A, Dong C, Wei X, Li X, Macdonald DD. The aggression behavior study of Cl- on the defect structure of passive films on copper. RSC Adv. 2019; 9(28): 15772-15779.

[249]

Pang Q, DorMohammadi H, Isgor OB, Árnadóttir L. Thermodynamic feasibility of the four-stage chloride-induced depassivation mechanism of iron. npj Mater Degrad. 2020; 4(1): 26.

[250]

Bouzoubaa A, Diawara B, Maurice V, Minot C, Marcus P. Ab initio modelling of localized corrosion: study of the role of surface steps in the interaction of chlorides with passivated nickel surfaces. Corrosion Sci. 2009; 51(9): 2174-2182.

[251]

Bouzoubaa A, Diawara B, Maurice V, Minot C, Marcus P. Ab initio study of the interaction of chlorides with defect-free hydroxylated NiO surfaces. Corrosion Sci. 2009; 51(4): 941-948.

[252]

Bouzoubaa A, Costa D, Diawara B, Audiffren N, Marcus P. Insight of DFT and atomistic thermodynamics on the adsorption and insertion of halides onto the hydroxylated NiO(111) surface. Corrosion Sci. 2010; 52(8): 2643-2652.

[253]

Yin F, Blumenfeld AL, Gruver V, Fripiat JJ. NH3 as a probe molecule for NMR and IR study of zeolite catalyst acidity. J Phys Chem B. 1997; 101(10): 1824-1830.

[254]

Ma H, Berthier Y, Marcus P. NH3 probing of the surface acidity of passive films on chromium. Corrosion Sci. 2002; 44(1): 171-178.

[255]

Wang C, Yang S, Chang H, Peng Y, Li J. Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3. J Mol Catal Chem. 2013; 376: 13-21.

[256]

Yan Z, Fan J, Zuo Z, Li Z, Zhang J. NH3 adsorption on the Lewis and Bronsted acid sites of MoO3 (010) surface: a cluster DFT study. Appl Surf Sci. 2014; 288: 690-694.

[257]

Lyu Z, Niu S, Lu C, Zhao G, Gong Z, Zhu Y. A density functional theory study on the selective catalytic reduction of NO by NH3 reactivity of α-Fe2O3 (0 0 1) catalyst doped by Mn, Ti, Cr and Ni. Fuel. 2020; 267:117147.

[258]

Xiao X, Liu X, Wang Z, Xu X, Chen M, Xie J. Corrosion mechanism and corrosion behavior prediction of Cu-10Ni-X alloys in NaCl solution combining DFT calculation and experiments. Corrosion Sci. 2024; 227:111671.

[259]

Cheng J, Sprik M. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. J Chem Theor Comput. 2010; 6(3): 880-889.

[260]

Cheng J, Liu X, VandeVondele J, Sulpizi M, Sprik M. Redox potentials and acidity constants from density functional theory based molecular dynamics. Accounts Chem Res. 2014; 47(12): 3522-3529.

[261]

Pfeiffer-Laplaud M, Costa D, Tielens F, Gaigeot M-P, Sulpizi M. Bimodal acidity at the amorphous silica/water interface. J Phys Chem C. 2015; 119(49): 27354-27362.

[262]

Natishan PM, McCafferty E, Hubler GK. Surface charge considerations in the pitting of ion-implanted aluminum. J Electrochem Soc. 1988; 135(2): 321-327.

[263]

McCafferty E, Natishan PM, Hubler GK. The anodic behavior of ion beam mixed surface alloys. Corrosion Sci. 1990; 30(2-3): 209-221.

[264]

Natishan PM, McCafferty E, Hubler GK. The corrosion behavior of Mo-Al, Cr-Al and Cr-Mo-Al surface alloys produced by ion beam mixing and ion implantation. Corrosion Sci. 1991; 32(7): 721-731.

[265]

Bockris JO, Kang Y. The protectivity of aluminum and its alloys with transition metals. J Solid State Electrochem. 1997; 1: 17-35.

[266]

Tang Y, Zhao X, Mao J, Zuo Y. The electrochemical characteristics of pitting for two steels in phosphate buffer solution with chloride. Mater Chem Phys. 2009; 116(2-3): 484-488.

[267]

Pieretti EF, Manhabosco SM, Luís FPD, Hinder S, Costa I. Localized corrosion evaluation of the ASTM F139 stainless steel marked by laser using scanning vibrating electrode technique, X-ray photoelectron spectroscopy and Mott-Schottky techniques. Electrochim Acta. 2014; 124: 150-155.

[268]

Stimming U, Schultze JW. The capacity of passivated iron electrodes and the band structure of the passive layer. Berichte der Bunsengesellschaft für physikalische Chemie. 1976; 80(12): 1297-1302.

[269]

Wielant J, Goossens V, Hausbrand R, Terryn H. Electronic properties of thermally formed thin iron oxide films. Electrochim Acta. 2007; 52(27): 7617-7625.

[270]

Harrington SP, Wang F, Devine TM. The structure and electronic properties of passive and prepassive films of iron in borate buffer. Electrochim Acta. 2010; 55(13): 4092-4102.

[271]

Hendy S, Walker B, Laycock N, Ryan M. Ab initio studies of the passive film formed on iron. Phys Rev B. 2003; 67(8):085407.

[272]

Hendy SC, Laycock NJ, Ryan MP. Atomistic modeling of cation transport in the passive film on iron and implications for models of growth kinetics. J Electrochem Soc. 2005; 152(8):B271.

[273]

Lebreau F, Islam MM, Diawara B, Marcus P. Structural, magnetic, electronic, defect, and diffusion properties of Cr2O3: a DFT+U study. J Phys Chem C. 2014; 118(31): 18133-18145.

[274]

Kong D, Xu A, Dong C, et al. Electrochemical investigation and ab initio computation of passive film properties on copper in anaerobic sulphide solutions. Corrosion Sci. 2016; 116: 34-43.

[275]

Wei X, Dong C, Yi P, Xu A, Chen Z, Li X. Electrochemical measurements and atomistic simulations of Cl--induced passivity breakdown on a Cu2O film. Corrosion Sci. 2018; 136: 119-128.

[276]

Ni X, Dong C, Zhang L, Xiao K, Cheng X, Li X. The passivity of pure nickel in alkaline solution under different temperatures: electrochemical verification and first-principles calculation. J Mater Eng Perform. 2021; 30(3): 1737-1747.

[277]

Ohlin CA, Villa EM, Rustad JR, Casey WH. Dissolution of insulating oxide materials at the molecular scale. Nat Mater. 2010; 9(1): 11-19.

[278]

Brown GE. How minerals react with water. Science. 2001; 294(5540): 67-69.

[279]

Cheng J, Sprik M. The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J Phys Condens Matter. 2014; 26(24):244108.

[280]

Liu L-M, Zhang C, Thornton G, Michaelides A. Structure and dynamics of liquid water on rutile TiO2(110). Phys Rev B. 2010; 82(16):161415.

[281]

Serrano G, Bonanni B, Di Giovannantonio M, et al. Molecular ordering at the interface between liquid water and rutile TiO2(110). Adv Mater Interfac. 2015; 2(17):1500246.

[282]

Zhang C, Hutter J, Sprik M. Coupling of surface chemistry and electric double layer at TiO2 electrochemical interfaces. J Phys Chem Lett. 2019; 10(14): 3871-3876.

[283]

Klyukin K, Rosso KM, Alexandrov V. Iron dissolution from goethite (α-FeOOH) surfaces in water by ab initio enhanced free-energy simulations. J Phys Chem C. 2018; 122(28): 16086-16091.

[284]

Leung K. First-principles modeling of Mn(II) migration above and dissolution from LixMn2O4(001) surfaces. Chem Mater. 2017; 29(6): 2550-2562.

[285]

Verma C, Lgaz H, Verma DK, Ebenso EE, Bahadur I, Quraishi MA. Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: a review. J Mol Liq. 2018; 260: 99-120.

[286]

Mamand DM, Kak Anwer TM, Qadr HM. Corrosion inhibition performance of organic compounds and theoretical calculations based on density functional theory (DFT). Corros Rev. 2023; 42: 1-15.

[287]

Fukui K, Yonezawa T, Shingu H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys. 2004; 20(4): 722-725.

[288]

Fukui K. Recognition of stereochemical paths by orbital interaction. Accounts Chem Res. 1971; 4(2): 57-64.

[289]

Fukui K. Role of frontier orbitals in chemical reactions. Science. 1982; 218(4574): 747-754.

[290]

Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983; 105(26): 7512-7516.

[291]

Yang W, Parr RG. Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA. 1985; 82(20): 6723-6726.

[292]

Parr RG, Szentpály Lv, Liu S, Index E. Electrophilicity index. J Am Chem Soc. 1999; 121(9): 1922-1924.

[293]

Jiang ZN, Duan JM, Zeng XQ, Li YR, Dong CF, Zhang GA. Unveiling the adsorption and inhibition mechanism of thiadiazole derivatives for mild steel corrosion in hydrochloric acid based on experimental approaches and first-principles calculations. Corrosion Sci. 2023; 224:111492.

[294]

Khalil N. Quantum chemical approach of corrosion inhibition. Electrochim Acta. 2003; 48(18): 2635-2640.

[295]

Tan B, Zhang S, Liu H, et al. Insights into the inhibition mechanism of three 5-phenyltetrazole derivatives for copper corrosion in sulfuric acid medium via experimental and DFT methods. J Taiwan Inst Chem Eng. 2019; 102: 424-437.

[296]

Abd El-Lateef HM, Shalabi K, Tantawy AH. Corrosion inhibition and adsorption features of novel bioactive cationic surfactants bearing benzenesulphonamide on C1018-steel under sweet conditions: combined modeling and experimental approaches. J Mol Liq. 2020; 320:114564.

[297]

Alaoui Mrani S, Ech-chihbi E, Arrousse N, et al. DFT and electrochemical investigations on the corrosion inhibition of mild steel by novel Schiff’s base derivatives in 1 M HCl solution. Arabian J Sci Eng. 2021; 46(6): 5691-5707.

[298]

Emregül KC, Düzgün E, Atakol O. The application of some polydentate Schiff base compounds containing aminic nitrogens as corrosion inhibitors for mild steel in acidic media. Corrosion Sci. 2006; 48(10): 3243-3260.

[299]

Ahamad I, Prasad R, Quraishi MA. Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corrosion Sci. 2010; 52(3): 933-942.

[300]

Obi-Egbedi NO, Obot IB. Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4. Corrosion Sci. 2011; 53(1): 263-275.

[301]

Li SL, Wang YG, Chen SH, et al. Some aspects of quantum chemical calculations for the study of Schiff base corrosion inhibitors on copper in NaCl solutions. Corrosion Sci. 1999; 41(9): 1769-1782.

[302]

Musa AY, Jalgham RTT, Mohamad AB. Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl. Corrosion Sci. 2012; 56: 176-183.

[303]

Espinoza-Vázquez A, Rodríguez-Gómez FJ, Negrón-Silva GE, et al. Fluconazole and fragments as corrosion inhibitors of API 5L X52 steel immersed in 1M HCl. Corrosion Sci. 2020; 174:108853.

[304]

Vosta J, Eliásek J. Study on corrosion inhibition from aspect of quantum chemistry. Corrosion Sci. 1971; 11(4): 223-229.

[305]

Ju H, Kai Z-P, Li Y. Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: a quantum chemical calculation. Corrosion Sci. 2008; 50(3): 865-871.

[306]

Obi-Egbedi NO, Obot IB, El-Khaiary MI. Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid. J Mol Struct. 2011; 1002(1-3): 86-96.

[307]

Kokalj A. On the alleged importance of the molecular electron-donating ability and the HOMO-LUMO gap in corrosion inhibition studies. Corrosion Sci. 2021; 180:109016.

[308]

Kokalj A, Lozinšek M, Kapun B, et al. Simplistic correlations between molecular electronic properties and inhibition efficiencies: do they really exist? Corrosion Sci. 2021; 179:108856.

[309]

Chakrabarti A. Quantum-chemical study of the corrosion inhibition of mild steel in 6% (wt/wt) HCl by means of cyanoguanidine derivatives. Br Corrosion J. 1984; 19(3): 124-126.

[310]

Fang J, Li J. Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides. J Mol Struct. 2002; 593(1-3): 179-185.

[311]

Gece G, Bilgiç S. A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corrosion Sci. 2010; 52(10): 3304-3308.

[312]

Bentiss F, Mernari B, Traisnel M, Vezin H, Lagrenée M. On the relationship between corrosion inhibiting effect and molecular structure of 2,5-bis(n-pyridyl)-1,3,4-thiadiazole derivatives in acidic media: Ac impedance and DFT studies. Corrosion Sci. 2011; 53(1): 487-495.

[313]

Elshakre ME, Alalawy HH, Awad MI, El-Anadouli BE. On the role of the electronic states of corrosion inhibitors: quantum chemical-electrochemical correlation study on urea derivatives. Corrosion Sci. 2017; 124: 121-130.

[314]

Lewis G. Quantum chemical parameters and corrosion inhibition efficiency of some organic compounds. Corrosion. 1982; 38(1): 60-62.

[315]

Xiao-Ci Y, Hong Z, Ming-Dao L, Hong-Xuan R, Lu-An Y. Quantum chemical study of the inhibition properties of pyridine and its derivatives at an aluminum surface. Corrosion Sci. 2000; 42(4): 645-653.

[316]

Sayós R, González M, Costa J. On the use of quantum chemical methods as an additional tool in studying corrosion inhibitor substances. Corrosion Sci. 1986; 26(11): 927-934.

[317]

Kandemirli F, Sagdinc S. Theoretical study of corrosion inhibition of amides and thiosemicarbazones. Corrosion Sci. 2007; 49(5): 2118-2130.

[318]

Yıldız R. An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions. Corrosion Sci. 2015; 90: 544-553.

[319]

Yadav M, Gope L, Kumari N, Yadav P. Corrosion inhibition performance of pyranopyrazole derivatives for mild steel in HCl solution: gravimetric, electrochemical and DFT studies. J Mol Liq. 2016; 216: 78-86.

[320]

Qiang Y, Zhang S, Tan B, Chen S. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corrosion Sci. 2018; 133: 6-16.

[321]

Costa D, Ribeiro T, Cornette P, Marcus P. DFT modeling of corrosion inhibition by organic molecules: carboxylates as inhibitors of aluminum corrosion. J Phys Chem C. 2016; 120(50): 28607-28616.

[322]

Chiter F, Costa D, Maurice V, Marcus P. DFT investigation of 2-mercaptobenzothiazole adsorption on model oxidized copper surfaces and relationship with corrosion inhibition. Appl Surf Sci. 2021; 537:147802.

[323]

Damej M, Hsissou R, Berisha A, et al. New epoxy resin as a corrosion inhibitor for the protection of carbon steel C38 in 1M HCl. experimental and theoretical studies (DFT, MC, and MD). J Mol Struct. 2022; 1254:132425.

[324]

Wang D, Li S, Ying Y, Wang M, Xiao H, Chen Z. Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives. Corrosion Sci. 1999; 41(10): 1911-1919.

[325]

Lesar A, Milošev I. Density functional study of the corrosion inhibition properties of 1,2,4-triazole and its amino derivatives. Chem Phys Lett. 2009; 483(4-6): 198-203.

[326]

Kovačević N, Milošev I, Kokalj A. The roles of mercapto, benzene, and methyl groups in the corrosion inhibition of imidazoles on copper: II. Inhibitor-copper bonding. Corrosion Sci. 2015; 98: 457-470.

[327]

Khaled KF, Amin MA. Computational and electrochemical investigation for corrosion inhibition of nickel in molar nitric acid by piperidines. J Appl Electrochem. 2008; 38(11): 1609-1621.

[328]

Wang W, Li Z, Sun Q, et al. Insights into the nature of the coupling interactions between uracil corrosion inhibitors and copper: a DFT and molecular dynamics study. Corrosion Sci. 2012; 61: 101-110.

[329]

Chiter F, Costa D, Maurice V, Marcus P. Corrosion inhibition of locally de-passivated surfaces by DFT study of 2-mercaptobenzothiazole on copper. npj Mater Degrad. 2021; 5(1): 52.

[330]

Kumar D, Jain V, Rai B. Imidazole derivatives as corrosion inhibitors for copper: a DFT and reactive force field study. Corrosion Sci. 2020; 171:108724.

[331]

Li J, Zhang D, Shi C, et al. Click-assembling film modified on different copper substrates and their comprehensive performance. Appl Surf Sci. 2019; 493: 336-350.

[332]

Arjomandi J, Moghanni-Bavil-Olyaei H, Parvin MH, et al. Inhibition of corrosion of aluminum in alkaline solution by a novel azo-schiff base: experiment and theory. J Alloys Compd. 2018; 746: 185-193.

[333]

Chen M-F, Chen Y, Jia Lim Z, Wah Wong M. Adsorption of imidazolium-based ionic liquids on the Fe(100) surface for corrosion inhibition: physisorption or chemisorption? J Mol Liq. 2022; 367:120489.

[334]

Rohrbach A, Hafner J, Kresse G. Ab initio study of the (0001) surfaces of hematite and chromia: influence of strong electronic correlations. Phys Rev B. 2004; 70(12):125426.

[335]

Jain A, Ong SP, Hautier G, et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 2013; 1:011002.

[336]

Khrabrov K, Shenbin I, Ryabov A, et al. nablaDFT: large-scale conformational energy and Hamiltonian prediction benchmark and dataset. Phys Chem Chem Phys. 2022; 24(42): 25853-25863.

[337]

Zhang L, Han J, Wang H, Car R, E W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett. 2018; 120(14):143001.

[338]

Calegari Andrade MF, Ko H-Y, Zhang L, Car R, Selloni A. Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics. Chem Sci. 2020; 11(9): 2335-2341.

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/