Data-driven prediction of phase formation in graphene-metal systems based on phase diagram insights
Leilei Chen , Changheng Li , Kai Xu , Ruonan Zhou , Ming Lou , Yujie Du , Denis Music , Keke Chang
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e81
Data-driven prediction of phase formation in graphene-metal systems based on phase diagram insights
Graphene-metal (G-M) composites have attracted tremendous interests due to their promising applications in electronics, optics, energy-storage devices and nano-electromechanical systems. Especially, phase formations of graphene combined with different metals are considered valuable for discovering and designing advanced G-M composites. However, the phase formations in G-M systems have rarely been systematically described since graphene was first extracted from graphite in 2004. Here, we propose a data-driven approach to predict the phase formations in G-M systems leveraging G-M binary phase diagrams, which were established using the calculation of phase diagrams method. Phase relationships obtained from G-M phase diagrams of 34 systems and formation enthalpies of corresponding carbides were employed as the training dataset in a machine learning model to further predict the phase formations in additional 13 G-M systems. Phase formation predictions achieved an accuracy of 87.5% in the test dataset. Three distinct phase formations were characterised in G-M systems. Finally, we propose a general phase formation rule in the G-M systems: metals with smaller atomic numbers in the same period are more likely to form secondary solutions with graphene.
CALPHAD / graphene-metal composite / machine learning / phase formation rule / phase diagram
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.
/
| 〈 |
|
〉 |