GPUMD 4.0: A high-performance molecular dynamics package for versatile materials simulations with machine-learned potentials

Ke Xu , Hekai Bu , Shuning Pan , Eric Lindgren , Yongchao Wu , Yong Wang , Jiahui Liu , Keke Song , Bin Xu , Yifan Li , Tobias Hainer , Lucas Svensson , Julia Wiktor , Rui Zhao , Hongfu Huang , Cheng Qian , Shuo Zhang , Zezhu Zeng , Bohan Zhang , Benrui Tang , Yang Xiao , Zihan Yan , Jiuyang Shi , Zhixin Liang , Junjie Wang , Ting Liang , Shuo Cao , Yanzhou Wang , Penghua Ying , Nan Xu , Chengbing Chen , Yuwen Zhang , Zherui Chen , Xin Wu , Wenwu Jiang , Esme Berger , Yanlong Li , Shunda Chen , Alexander J. Gabourie , Haikuan Dong , Shiyun Xiong , Ning Wei , Yue Chen , Jianbin Xu , Feng Ding , Zhimei Sun , Tapio Ala-Nissila , Ari Harju , Jincheng Zheng , Pengfei Guan , Paul Erhart , Jian Sun , Wengen Ouyang , Yanjing Su , Zheyong Fan

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (3) : e70028

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (3) : e70028 DOI: 10.1002/mgea.70028
REVIEW

GPUMD 4.0: A high-performance molecular dynamics package for versatile materials simulations with machine-learned potentials

Author information +
History +
PDF

Abstract

This paper provides a comprehensive overview of the latest stable release of the graphics processing units molecular dynamics (GPUMD) package, GPUMD 4.0. We begin with a brief review of its development history, starting from the initial version. We then discuss the theoretical foundations for the development of the GPUMD package, including the formulations of the interatomic force, virial and heat current for many-body potentials, the development of the highly efficient and flexible neuroevolution potential (NEP) method, the supported integrators and related operations, the various physical properties that can be calculated on the fly, and the GPUMD ecosystem. After presenting these functionalities, we review a range of applications enabled by GPUMD, particularly in combination with the NEP approach. Finally, we outline possible future development directions for GPUMD.

Keywords

GPUMD / interatomic potential / machine-learned potential / materials simulation / molecular dynamics

Cite this article

Download citation ▾
Ke Xu, Hekai Bu, Shuning Pan, Eric Lindgren, Yongchao Wu, Yong Wang, Jiahui Liu, Keke Song, Bin Xu, Yifan Li, Tobias Hainer, Lucas Svensson, Julia Wiktor, Rui Zhao, Hongfu Huang, Cheng Qian, Shuo Zhang, Zezhu Zeng, Bohan Zhang, Benrui Tang, Yang Xiao, Zihan Yan, Jiuyang Shi, Zhixin Liang, Junjie Wang, Ting Liang, Shuo Cao, Yanzhou Wang, Penghua Ying, Nan Xu, Chengbing Chen, Yuwen Zhang, Zherui Chen, Xin Wu, Wenwu Jiang, Esme Berger, Yanlong Li, Shunda Chen, Alexander J. Gabourie, Haikuan Dong, Shiyun Xiong, Ning Wei, Yue Chen, Jianbin Xu, Feng Ding, Zhimei Sun, Tapio Ala-Nissila, Ari Harju, Jincheng Zheng, Pengfei Guan, Paul Erhart, Jian Sun, Wengen Ouyang, Yanjing Su, Zheyong Fan. GPUMD 4.0: A high-performance molecular dynamics package for versatile materials simulations with machine-learned potentials. Materials Genome Engineering Advances, 2025, 3(3): e70028 DOI:10.1002/mgea.70028

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2: 19-25.

[2]

Thompson AP, Aktulga HM, Berger R, et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022; 271:108171.

[3]

Eastman P, Galvelis R, Peláez RP, et al. OpenMM 8: molecular dynamics simulation with machine learning potentials. J Phys Chem B. 2024; 128(1): 109-116.

[4]

Talirz L, Ghiringhelli LM, Smit B. Trends in atomistic simulation software usage [Article v1.0]. Living J Comput Mol Sci. 2021; 3(1):1483.

[5]

Talirz L. Ltalirz/Atomistic-Software: v2025.4.20; 2025.

[6]

Fan Z, Chen W, Vierimaa V, Harju A. Efficient molecular dynamics simulations with many-body potentials on graphics processing units. Comput Phys Commun. 2017; 218: 10-16.

[7]

Fan Z, Wang Y, Ying P, et al. GPUMD: a package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. J Chem Phys. 2022; 157(11):114801.

[8]

Anderson JA, Glaser J, Glotzer SC. HOOMD-blue: a Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput Mater Sci. 2020; 173:109363.

[9]

Zhu Y-L, Liu H, Li Z-W, Qian H-J, Milano G, Lu Z-Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J Comput Chem. 2013; 34(25): 2197-2211.

[10]

Xu J-L, Guo S-H, Zhen M, Yu Z-C, Zhu Y-L, Lu Z-Y. PyGAMD: Python GPU-accelerated molecular dynamics software. MGE Adv. 2025: 1.

[11]

Fan Z, Siro T, Harju A. Accelerated molecular dynamics force evaluation on graphics processing units for thermal conductivity calculations. Comput Phys Commun. 2013; 184(5): 1414-1425.

[12]

Fan Z, Pereira LFC, Wang H-Q, Zheng J-C, Donadio D, Harju A. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations. Phys Rev B. 2015; 92(9):094301.

[13]

Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984; 29(12): 6443-6453.

[14]

Finnis MW, Sinclair JE. A simple empirical N-body potential for transition metals. Philos Mag A. 1984; 50(1): 45-55.

[15]

Stillinger FH, Weber TA. Computer simulation of local order in condensed phases of silicon. Phys Rev B. 1985; 31(8): 5262-5271.

[16]

Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett. 1988; 61(25): 2879-2882.

[17]

Fan Z, Dong H, Harju A, Ala-Nissila T. Homogeneous nonequilibrium molecular dynamics method for heat transport and spectral decomposition with many-body potentials. Phys Rev B. 2019; 99(6):064308.

[18]

Fan Z, Pereira LFC, Hirvonen P, et al. Thermal conductivity decomposition in two-dimensional materials: application to graphene. Phys Rev B. 2017; 95(14):144309.

[19]

Gabourie AJ, Fan Z, Ala-Nissila T, Pop E. Spectral decomposition of thermal conductivity: comparing velocity decomposition methods in homogeneous molecular dynamics simulations. Phys Rev B. 2021; 103(20):205421.

[20]

Fan Z, Wang Y, Gu X, Qian P, Su Y, Ala-Nissila T. A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties. J Phys Condens Matter. 2019; 32(13):135901.

[21]

Brorsson J, Hashemi A, Fan Z, et al. Efficient calculation of the lattice thermal conductivity by atomistic simulations with ab initio accuracy. Adv Theor Simulat. 2022; 5(2):2100217.

[22]

Fan Z, Zeng Z, Zhang C, et al. Neuroevolution machine learning potentials: combining high accuracy and low cost in atomistic simulations and application to heat transport. Phys Rev B. 2021; 104(10):104309.

[23]

Fan Z. Improving the accuracy of the neuroevolution machine learning potential for multi-component systems. J Phys Condens Matter. 2022; 34(12):125902.

[24]

Song K, Zhao R, Liu J, et al. General-purpose machine-learned potential for 16 elemental metals and their alloys. Nat Commun. 2024; 15(1):10208.

[25]

Ying P, Qian C, Zhao R, et al. Advances in modeling complex materials: the rise of neuroevolution potentials. Chem Phys Rev. 2025; 6(1):011310.

[26]

Fan Z, Ke X, Bu H, et al. Brucefan1983/gpumd: Gpumd-v4.0. Zenodo. 2025.

[27]

Fan Z. CUDA Programming. Tsinghua University Press; 2020.

[28]

Fan Z. Molecular Dynamics Simulation. Chemical Industry Press; 2024.

[29]

Lennard-Jones JE. Cohesion. Proc Phys Soc. 1931; 43(5): 461-482.

[30]

Zeng J, Zhang D, Lu D, et al. DeePMD-kit v2: a software package for deep potential models. J Chem Phys. 2023; 159(5):054801.

[31]

Bu H, Jiang W, Ying P, Fan Z, Ouyang W. Accurate modeling of LEGO-like vdW heterostructures: integrating machine learned with anisotropic interlayer potentials. arXiv:2504.12985 [physics.comp-ph]. 2025.

[32]

Jiang W, Liang T, Bu H, Xu J, Ouyang W. Moiré-driven interfacial thermal transport in twisted transition metal dichalcogenides. ACS Nano. 2025; 19(17): 16287-16296.

[33]

Ouyang W, Mandelli D, Urbakh M, Hod O. Nanoserpents: graphene nanoribbon motion on two-dimensional hexagonal materials. Nano Lett. 2018; 18(9): 6009-6016.

[34]

Ouyang W, Azuri I, Mandelli D, et al. Mechanical and tribological properties of layered materials under high pressure: assessing the importance of many-body dispersion effects. J Chem Theor Comput. 2020; 16(1): 666-676.

[35]

Jiang W, Sofer R, Gao X, et al. Anisotropic interlayer force field for group-VI transition metal dichalcogenides. J Phys Chem A. 2023; 127(46): 9820-9830.

[36]

Jiang W, Sofer R, Gao X, et al. Anisotropic interlayer force field for interfaces of graphene and h-BN with transition metal dichalcogenides. J Phys Chem C. 2025; 129(2): 1417-1427.

[37]

Eriksson F, Fransson E, Erhart P. The hiphive package for the extraction of high-order force constants by machine learning. Adv Theor Simulat. 2019; 2(5):1800184.

[38]

Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007; 98(14):146401.

[39]

Liu J, Byggmästar J, Fan Z, Qian P, Su Y. Large-scale machine-learning molecular dynamics simulation of primary radiation damage in tungsten. Phys Rev B. 2023; 108(5):054312.

[40]

Ying P, Fan Z. Combining the D3 dispersion correction with the neuroevolution machine-learned potential. J Phys Condens Matter. 2023; 36(12):125901.

[41]

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011; 32(7): 1456-1465.

[42]

Ziegler JF, Biersack JP. The stopping and range of ions in matter. In: DA Bromley, ed. Treatise on Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter. Springer US; 1985: 93-129.

[43]

Liang T, Xu K, Lindgren E, et al. NEP89: universal neuroevolution potential for inorganic and organic materials across 89 elements. arXiv:2504.21286 [cond-mat.mtrl-sci]. 2025.

[44]

Batzner S, Musaelian A, Sun L, et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat Commun. 2022; 13(1):2453.

[45]

Batatia I, Kovacs DP, Simm G, Ortner C, Csányi G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. Adv Neural Inf Process Syst. 2022; 35:11423.

[46]

Swope WC, Andersen HC, Berens PH, Wilson KR. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys. 1982; 76(1): 637-649.

[47]

Tuckerman ME. Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press; 2023.

[48]

Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984; 81(8): 3684-3690.

[49]

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007; 126(1):014101.

[50]

Bussi G, Parrinello M. Accurate sampling using Langevin dynamics. Phys Rev E. 2007; 75(5):056707.

[51]

Leimkuhler B, Matthews C. Rational construction of stochastic numerical methods for molecular sampling. Appl Math Res eXpress. 2013; 2013:34.

[52]

Bernetti M, Bussi G. Pressure control using stochastic cell rescaling. J Chem Phys. 2020; 153(11):114107.

[53]

Li Z, Xiong S, Sievers C, et al. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. J Chem Phys. 2019; 151(23):234105.

[54]

Frenkel D, Ladd AJC. New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J Chem Phys. 1984; 81(7): 3188-3193.

[55]

Freitas R, Asta M, de Koning M. Nonequilibrium free-energy calculation of solids using LAMMPS. Comput Mater Sci. 2016; 112: 333-341.

[56]

Cajahuaringa S, Antonelli A. Non-equilibrium free-energy calculation of phase-boundaries using LAMMPS. Comput Mater Sci. 2022; 207:111275.

[57]

Paula Leite R, Freitas R, Azevedo R, de Koning M. The Uhlenbeck-Ford model: exact virial coefficients and application as a reference system in fluid-phase free-energy calculations. J Chem Phys. 2016; 145(19):194101.

[58]

Pan S, Shi J, Liang Z, et al. Shock compression pathways to pyrite silica from machine learning simulations. Phys Rev B. 2024; 110(22):224101.

[59]

Ravelo R, Holian BL, Germann TC, Lomdahl PS. Constant-stress Hugoniostat method for following the dynamical evolution of shocked matter. Phys Rev B. 2004; 70(1):014103.

[60]

Ceriotti M, Parrinello M, Markland TE, Manolopoulos DE. Efficient stochastic thermostatting of path integral molecular dynamics. J Chem Phys. 2010; 133(12):124104.

[61]

Ying P, Zhou W, Svensson L, et al. Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: case studies on thermal properties of materials. J Chem Phys. 2025; 162(6):064109.

[62]

Craig IR, Manolopoulos DE. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. J Chem Phys. 2004; 121(8): 3368-3373.

[63]

Rossi M, Ceriotti M, Manolopoulos DE. How to remove the spurious resonances from ring polymer molecular dynamics. J Chem Phys. 2014; 140(23):234116.

[64]

Korol R, Bou-Rabee N, Miller I, Thomas F. Cayley modification for strongly stable path-integral and ring-polymer molecular dynamics. J Chem Phys. 2019; 151(12):124103.

[65]

Song K, Liu J, Chen S, Fan Z, Su Y, Qian P. Solute segregation in polycrystalline aluminum from hybrid Monte Carlo and molecular dynamics simulations with a unified neuroevolution potential. arXiv:2404.13694 [cond-mat.mtrl-sci]. 2024.

[66]

Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B. 2012; 85(18):184203.

[67]

Sadigh B, Erhart P. Calculation of excess free energies of precipitates via direct thermodynamic integration across phase boundaries. Phys Rev B. 2012; 86(13):134204.

[68]

Rahm JM, Lofgren J, Fransson E, Erhart P. A tale of two phase diagrams: interplay of ordering and hydrogen uptake in Pd-Au-H. Acta Mater. 2021; 211:116893.

[69]

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool. Model Simulat Mater Sci Eng. 2010; 18(1):015012.

[70]

Fan Z, Xiao Y, Wang Y, Ying P, Chen S, Dong H. Combining linear-scaling quantum transport and machine-learning molecular dynamics to study thermal and electronic transports in complex materials. J Phys Condens Matter. 2024; 36(24):245901.

[71]

Lindgren E, Rahm M, Fransson E, et al. calorine: a Python package for constructing and sampling neuroevolution potential models. J Open Source Softw. 2024; 9(95):6264.

[72]

Fransson E, Slabanja M, Erhart P, Wahnström G. DYNASOR – a tool for extracting dynamical structure factors and current correlation functions from molecular dynamics simulations. Adv Theor Simulat. 2021; 4(2):2000240.

[73]

Berger E, Fransson E, Eriksson F, et al. Dynasor 2: from simulation to experiment through correlation functions. Comput Phys Commun. 2025;109759.

[74]

Wang J, Gao H, Han Y, et al. MAGUS: machine learning and graph theory assisted universal structure searcher. Natl Sci Rev. 2023; 10(7):nwad128.

[75]

Han Y, Ding C, Wang J, et al. Efficient crystal structure prediction based on the symmetry principle. Nat Comput Sci. 2025; 5(3): 255-267.

[76]

Wu Y-C, Shao J-L. mdapy: a flexible and efficient analysis software for molecular dynamics simulations. Comput Phys Commun. 2023; 290:108764.

[77]

Chen C, Li Y, Zhao R, et al. NepTrain and NEPTrainKit: automated active learning and visualization toolkit for neuroevolution potentials. arXiv:2506.01868 [cs.LG]. 2025.

[78]

Liang T, Jiang W, Xu K, et al. PYSED: a tool for extracting kinetic-energy-weighted phonon dispersion and lifetime from molecular dynamics simulations. arXiv:2505.00353 [physics.comp-ph]. 2025.

[79]

Larsen AH, Mortensen JJ, Blomqvist J, et al. The atomic simulation environment – a Python library for working with atoms. J Phys Condens Matter. 2017; 29(27):273002.

[80]

Hirvonen P, Ervasti MM, Fan Z, et al. Multiscale modeling of polycrystalline graphene: a comparison of structure and defect energies of realistic samples from phase field crystal models. Phys Rev B. 2016; 94(3):035414.

[81]

Mortazavi B, Fan Z, Pereira LFC, Harju A, Rabczuk T. Amorphized graphene: a stiff material with low thermal conductivity. Carbon. 2016; 103: 318-326.

[82]

Azizi K, Hirvonen P, Fan Z, et al. Kapitza thermal resistance across individual grain boundaries in graphene. Carbon. 2017; 125: 384-390.

[83]

Fan Z, Hirvonen P, Pereira LFC, et al. Bimodal grain-size scaling of thermal transport in polycrystalline graphene from large-scale molecular dynamics simulations. Nano Lett. 2017; 17(10): 5919-5924.

[84]

Fan Z, Uppstu A, Harju A. Dominant source of disorder in graphene: charged impurities or ripples? 2D Mater. 2017; 4(2):025004.

[85]

Hirvonen P, Fan Z, Ervasti MM, Harju A, Elder KR, Ala-Nissila T. Energetics and structure of grain boundary triple junctions in graphene. Sci Rep. 2017; 7(1):4754.

[86]

Mortazavi B, Lherbier A, Fan Z, Harju A, Rabczuk T, Charlier J-C. Thermal and electronic transport characteristics of highly stretchable graphene kirigami. Nanoscale. 2017; 9(42): 16329-16341.

[87]

Dong H, Fan Z, Shi L, Harju A, Ala-Nissila T. Equivalence of the equilibrium and the nonequilibrium molecular dynamics methods for thermal conductivity calculations: from bulk to nanowire silicon. Phys Rev B. 2018; 97(9):094305.

[88]

Dong H, Hirvonen P, Fan Z, Ala-Nissila T. Heat transport in pristine and polycrystalline single-layer hexagonal boron nitride. Phys Chem Chem Phys. 2018; 20(38): 24602-24612.

[89]

Fan Z, Vierimaa V, Harju A. GPUQT: an efficient linear-scaling quantum transport code fully implemented on graphics processing units. Comput Phys Commun. 2018; 230: 113-120.

[90]

Hirvonen P, La Boissonière GM, Fan Z, et al. Grain extraction and microstructural analysis method for two-dimensional poly and quasicrystalline solids. Phys Rev Mater. 2018; 2:103603.

[91]

Mortazavi B, Makaremi M, Shahrokhi M, Fan Z, Rabczuk T. N-graphdiyne two-dimensional nanomaterials: semiconductors with low thermal conductivity and high stretchability. Carbon. 2018; 137: 57-67.

[92]

Rajabpour A, Fan Z, Vaez Allaei SM. Inter-layer and intra-layer heat transfer in bilayer/monolayer graphene van der Waals heterostructure: Is there a Kapitza resistance analogous? Appl Phys Lett. 2018; 112(23):233104.

[93]

Xu K, Fan Z, Zhang J, Wei N, Ala-Nissila T. Thermal transport properties of single-layer black phosphorus from extensive molecular dynamics simulations. Model Simulat Mater Sci Eng. 2018; 26(8):085001.

[94]

Gu X, Fan Z, Bao H, Zhao CY. Revisiting phonon-phonon scattering in single-layer graphene. Phys Rev B. 2019; 100(6):064306.

[95]

Isaeva L, Barbalinardo G, Donadio D, Baroni S. Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach. Nat Commun. 2019; 10(1):3853.

[96]

Xu K, Gabourie AJ, Hashemi A, et al. Thermal transport in MoS2 from molecular dynamics using different empirical potentials. Phys Rev B. 2019; 99(5):054303.

[97]

Bea EA, Carusela MF, Soba A, Monastra AG, Viotti AMM. Thermal conductance of structured silicon nanocrystals. Model Simulat Mater Sci Eng. 2020; 28(7):075004.

[98]

Dong H, Fan Z, Qian P, Ala-Nissila T, Su Y. Thermal conductivity reduction in carbon nanotube by fullerene encapsulation: a molecular dynamics study. Carbon. 2020; 161: 800-808.

[99]

Fu B, Parrish KD, Kim H-Y, Tang G, McGaughey AJH. Phonon confinement and transport in ultrathin films. Phys Rev B. 2020; 101(4):045417.

[100]

Gabourie AJ, Suryavanshi SV, Farimani AB, Pop E. Reduced thermal conductivity of supported and encased monolayer and bilayer MoS2. 2D Mater. 2020; 8(1):011001.

[101]

Wu X, Han Q. Thermal conductivity of defective graphene: an efficient molecular dynamics study based on graphics processing units. Nanotechnology. 2020; 31(21):215708.

[102]

Wu X, Han Q. Thermal conductivity of monolayer hexagonal boron nitride: from defective to amorphous. Comput Mater Sci. 2020; 184:109938.

[103]

Barbalinardo G, Chen Z, Dong H, Fan Z, Donadio D. Ultrahigh convergent thermal conductivity of carbon nanotubes from comprehensive atomistic modeling. Phys Rev Lett. 2021; 127(2):025902.

[104]

Chen X-K, Hu X-Y, Jia P, Xie Z-X, Liu J. Tunable anisotropic thermal transport in porous carbon foams: the role of phonon coupling. Int J Mech Sci. 2021; 206:106576.

[105]

Dong H, Hirvonen P, Fan Z, Qian P, Su Y, Ala-Nissila T. Heat transport across graphene/hexagonal-BN tilted grain boundaries from phase-field crystal model and molecular dynamics simulations. J Appl Phys. 2021; 130(23):235102.

[106]

Dong H, Xiong S, Fan Z, Qian P, Su Y, Ala-Nissila T. Interpretation of apparent thermal conductivity in finite systems from equilibrium molecular dynamics simulations. Phys Rev B. 2021; 103(3):035417.

[107]

Du Y, Ying P, Zhang J. Prediction and optimization of the thermal transport in hybrid carbon-boron nitride honeycombs using machine learning. Carbon. 2021; 184: 492-503.

[108]

Kim SE, Mujid F, Rai A, et al. Extremely anisotropic van der Waals thermal conductors. Nature. 2021; 597(7878): 660-665.

[109]

Lundgren NW, Barbalinardo G, Donadio D. Mode localization and suppressed heat transport in amorphous alloys. Phys Rev B. 2021; 103(2):024204.

[110]

So S, Kim J-Y, Kim D, Lee J-H. Recovery of thermal transport in atomic-layer-deposition-healed defective graphene. Carbon. 2021; 180: 77-84.

[111]

Wang H, Cheng Y, Fan Z, et al. Anomalous thermal conductivity enhancement in low dimensional resonant nanostructures due to imperfections. Nanoscale. 2021; 13(22): 10010-10015.

[112]

Wu X, Han Q. Phonon thermal transport across multilayer graphene/hexagonal boron nitride van der Waals heterostructures. ACS Appl Mater Interfaces. 2021; 13(27): 32564-32578.

[113]

Wu X, Han Q. Semidefective graphene/h-BN in-plane heterostructures: enhancing interface thermal conductance by topological defects. J Phys Chem C. 2021; 125(4): 2748-2760.

[114]

Zhang Z, Guo Y, Bescond M, Chen J, Nomura M, Volz S. Generalized decay law for particlelike and wavelike thermal phonons. Phys Rev B. 2021; 103(18):184307.

[115]

Cheng Y, Xiong S, Zhang T. Enhancing the coherent phonon transport in SiGe nanowires with dense Si/Ge interfaces. Nanomaterials. 2022; 12(24):4373.

[116]

Dong H, Fan Z, Qian P, Su Y. Exactly equivalent thermal conductivity in finite systems from equilibrium and nonequilibrium molecular dynamics simulations. Phys E Low-Dimens Syst Nanostruct. 2022; 144:115410.

[117]

Feng H, Zhang K, Wang X, Zhang G, Guo X. Thermal transport of bilayer graphene: a homogeneous nonequilibrium molecular dynamics study. Phys Scri. 2022; 97(4):045704.

[118]

Gabourie AJ, Köroğlu Ç, Pop E. Substrate-dependence of monolayer MoS2 thermal conductivity and thermal boundary conductance. J Appl Phys. 2022; 131(19):195103.

[119]

Jin S, Zhang Z, Guo Y, Chen J, Nomura M, Volz S. Optimization of interfacial thermal transport in Si/Ge heterostructure driven by machine learning. Int J Heat Mass Tran. 2022; 182:122014.

[120]

Li Z-H, Lu C, Shi A, Zhao S, Ou B, Wei N. A multi-scale study on deformation and failure process of metallic structures in extreme environment. Int J Mol Sci. 2022; 23(22):14437.

[121]

Li K, Cheng Y, Dou M, Zeng W, Volz S, Xiong S. Tuning the anisotropic thermal transport in 110-silicon membranes with surface resonances. Nanomaterials. 2022; 12(1):123.

[122]

Li K, Cheng Y, Wang H, et al. Phonon resonant effect in silicon membranes with different crystallographic orientations. Int J Heat Mass Tran. 2022; 183:122144.

[123]

Liang T, Xu K, Han M, et al. Abnormally high thermal conductivity in fivefold twinned diamond nanowires. Mater Today Phys. 2022; 25:100705.

[124]

Sha W, Dai X, Chen S, Guo F. Phonon thermal transport in graphene/h-BN superlattice monolayers. Diam Relat Mater. 2022; 129:109341.

[125]

Sha W, Guo F. Thermal transport in two-dimensional carbon nitrides: a comparative molecular dynamics study. Carbon Trends. 2022; 7:100161.

[126]

Wang X, Wang Y, Wang J, et al. Pressure stabilized lithium-aluminum compounds with both superconducting and superionic behaviors. Phys Rev Lett. 2022; 129(24):246403.

[127]

Wu X, Han Q. Transition from incoherent to coherent phonon thermal transport across graphene/h-BN van der Waals superlattices. Int J Heat Mass Tran. 2022; 184:122390.

[128]

Wu X, Han Q. Maximum thermal conductivity of multilayer graphene with periodic two-dimensional empty space. Int J Heat Mass Tran. 2022; 191:122829.

[129]

Wu X, Han Q. Tunable anisotropic in-plane thermal transport of multilayer graphene induced by 2D empty space: insights from interfaces. Surf Interfaces. 2022; 33:102296.

[130]

Xu K, Liang T, Fu Y, et al. Gradient nano-grained graphene as 2D thermal rectifier: a molecular dynamics based machine learning study. Appl Phys Lett. 2022; 121(13):133501.

[131]

Ying P, Liang T, Du Y, Zhang J, Zeng X, Zhong Z. Thermal transport in planar sp2-hybridized carbon allotropes: a comparative study of biphenylene network, pentaheptite and graphene. Int J Heat Mass Tran. 2022; 183:122060.

[132]

Zhou Z, Xu K, Song Z, et al. Isotope doping-induced crossover shift in the thermal conductivity of thin silicon nanowires. J Phys Condens Matter. 2022; 35(8):085702.

[133]

Bea E, Viotti AM, Carusela M, Monastra A, Soba A. Assessment, improvement, and comparison of different computational tools used for the simulation of heat transport in nanostructures. Simulation. 2023; 99(3): 237-244.

[134]

Cheng R, Shen X, Klotz S, et al. Lattice dynamics and thermal transport of PbTe under high pressure. Phys Rev B. 2023; 108(10):104306.

[135]

Cheng Y, Fan Z, Zhang T, et al. Magic angle in thermal conductivity of twisted bilayer graphene. Mater Today Phys. 2023; 35:101093.

[136]

de Vries IF, Osthues H, Doltsinis NL. Thermal conductivity across transition metal dichalcogenide bilayers. iScience. 2023; 26(4):106447.

[137]

Dong H, Cao C, Ying P, Fan Z, Qian P, Su Y. Anisotropic and high thermal conductivity in monolayer quasi-hexagonal fullerene: a comparative study against bulk phase fullerene. Int J Heat Mass Tran. 2023; 206:123943.

[138]

Du P-H, Zhang C, Li T, Sun Q. Low lattice thermal conductivity with two-channel thermal transport in the superatomic crystal PH4AlBr4. Phys Rev B. 2023; 107(15):155204.

[139]

Eriksson F, Fransson E, Linderalv C, Fan Z, Erhart P. Tuning the through-plane lattice thermal conductivity in van der Waals structures through rotational (dis) ordering. ACS Nano. 2023; 17(24): 25565-25574.

[140]

Fransson E, Rahm JM, Wiktor J, Erhart P. Revealing the free energy landscape of halide perovskites: metastability and transition characters in CsPbBr3 and MAPbI3. Chem Mater. 2023; 35(19): 8229-8238.

[141]

Fransson E, Rosander P, Eriksson F, Rahm JM, Tadano T, Erhart P. Limits of the phonon quasi-particle picture at the cubic-to-tetragonal phase transition in halide perovskites. Commun Phys. 2023; 6(1):173.

[142]

Fransson E, Wiktor J, Erhart P. Phase transitions in inorganic halide perovskites from machine-learned potentials. J Phys Chem C. 2023; 127(28): 13773-13781.

[143]

Li Y, Jiang J-W. Vacancy defects impede the transition from peapods to diamond: a neuroevolution machine learning study. Phys Chem Chem Phys. 2023; 25(37): 25629-25638.

[144]

Liang T, Ying P, Xu K, et al. Mechanisms of temperature-dependent thermal transport in amorphous silica from machine-learning molecular dynamics. Phys Rev B. 2023; 108(18):184203.

[145]

Liu Y, Liu Y, Yue J, Xiong L, Nian L-L, Hu S. Modulation of interface modes for resonance-induced enhancement of the interfacial thermal conductance in pillar-based Si/Ge nanowires. Phys Rev B. 2023; 108(23):235426.

[146]

Lu C, hui Li Z, Li S, et al. Molecular dynamics study of thermal transport properties across covalently bonded graphite-nanodiamond interfaces. Carbon. 2023; 213:118250.

[147]

Lu Y, Shi Y, Wang J, Dong H, Yu J. Reduction of thermal conductivity in carbon nanotubes by fullerene encapsulation from machine-learning molecular dynamics simulations. J Appl Phys. 2023; 134(24):244901.

[148]

Ouyang N, Zeng Z, Wang C, Wang Q, Chen Y. Role of high-order lattice anharmonicity in the phonon thermal transport of silver halide Ag X (X = Cl, Br, I). Phys Rev B. 2023; 108(17):174302.

[149]

Pan S, Huang T, Vazan A, et al. Magnesium oxide-water compounds at megabar pressure and implications on planetary interiors. Nat Commun. 2023; 14(1):1165.

[150]

Rosander P, Fransson E, Milesi-Brault C, et al. Anharmonicity of the antiferrodistortive soft mode in barium zirconate BaZrO3. Phys Rev B. 2023; 108(1):014309.

[151]

Sha W, Dai X, Chen S, Yin B, Guo F. Phonon thermal transport in two-dimensional PbTe monolayers via extensive molecular dynamics simulations with a neuroevolution potential. Mater Today Phys. 2023; 34:101066.

[152]

Shi J, Liang Z, Wang J, et al. Double-shock compression pathways from diamond to BC8 carbon. Phys Rev Lett. 2023; 131(14):146101.

[153]

Shi Y-B, Chen Y-Y, Wang H, et al. Investigation of the mechanical and transport properties of InGeX3 (X = S, Se and Te) monolayers using density functional theory and machine learning. Phys Chem Chem Phys. 2023; 25(20): 13864-13876.

[154]

Shi Y, Chen Y, Dong H, Wang H, Qian P. Investigation of phase transition, mechanical behavior and lattice thermal conductivity of halogen perovskites using machine learning interatomic potentials. Phys Chem Chem Phys. 2023; 25(44): 30644-30655.

[155]

Su Y, Chen Y-Y, Wang H, et al. Origin of low lattice thermal conductivity and mobility of lead-free halide double perovskites. J Alloys Compd. 2023; 962:170988.

[156]

Sun Z, Qi Z, Liang K, et al. A neuroevolution potential for predicting the thermal conductivity of α, β, and ε-Ga2O3. Appl Phys Lett. 2023; 123(19):192202.

[157]

Wang Y, Fan Z, Qian P, Caro MA, Ala-Nissila T. Quantum-corrected thickness-dependent thermal conductivity in amorphous silicon predicted by machine learning molecular dynamics simulations. Phys Rev B. 2023; 107(5):054303.

[158]

Wang Q, Wang C, Chi C, et al. Phonon transport in freestanding SrTiO3 down to the monolayer limit. Phys Rev B. 2023; 108(11):115435.

[159]

Wei H, Hu Y, Bao H. Influence of point defects and multiscale pores on the different phonon transport regimes. Commun Mater. 2023; 4:1.

[160]

Wiktor J, Fransson E, Kubicki D, Erhart P. Quantifying dynamic tilting in halide perovskites: chemical trends and local correlations. Chem Mater. 2023; 35(17): 6737-6744.

[161]

Wu X, Huang X, Yang L, et al. Suppressed thermal transport in mathematically inspired 2D heterosystems. Carbon. 2023; 213:118264.

[162]

Wu X, Ying P, Li C, Han Q. Dual effects of hetero-interfaces on phonon thermal transport across graphene/C3N lateral superlattices. Int J Heat Mass Tran. 2023; 201:123643.

[163]

Xiong J, Qi Z, Liang K, et al. Molecular dynamics insights on thermal conductivities of cubic diamond, lonsdaleite and nanotwinned diamond via the machine learned potential. Chin Phys B. 2023; 32(12):128101.

[164]

Xu K, Hao Y, Liang T, et al. Accurate prediction of heat conductivity of water by a neuroevolution potential. J Chem Phys. 2023; 158(20):204114.

[165]

Yang C, Wang J, Ma D, et al. Phonon transport across GaN-diamond interface: the nontrivial role of pre-interface vacancy-phonon scattering. Int J Heat Mass Tran. 2023; 214:124433.

[166]

Ying P, Dong H, Liang T, Fan Z, Zhong Z, Zhang J. Atomistic insights into the mechanical anisotropy and fragility of monolayer fullerene networks using quantum mechanical calculations and machine-learning molecular dynamics simulations. Extrem Mech Lett. 2023; 58:101929.

[167]

Ying P, Liang T, Xu K, et al. Variable thermal transport in black, blue, and violet phosphorene from extensive atomistic simulations with a neuroevolution potential. Int J Heat Mass Tran. 2023; 202:123681.

[168]

Ying P, Liang T, Xu K, et al. Sub-micrometer phonon mean free paths in metal-organic frameworks revealed by machine-learning molecular dynamics simulations. ACS Appl Mater Interfaces. 2023; 15(30): 36412-36422.

[169]

Zhang H, Gu X, Fan Z, Bao H. Vibrational anharmonicity results in decreased thermal conductivity of amorphous HfO2 at high temperature. Phys Rev B. 2023; 108(4):045422.

[170]

Zhao R, Wang S, Kong Z, et al. Development of a neuroevolution machine learning potential of Pd-Cu-Ni-P alloys. Mater Des. 2023; 231:112012.

[171]

Zhou Z, Zeng J, Song Z, et al. Thermal conductivity of fivefold twinned silicon-germanium heteronanowires. Phys Chem Chem Phys. 2023; 25(37): 25368-25376.

[172]

Berger E, Komsa H-P. Polarizability models for simulations of finite temperature Raman spectra from machine learning molecular dynamics. Phys Rev Mater. 2024; 8(4):043802.

[173]

Berger E, Niemelä J, Lampela O, Juffer AH, Komsa H-P. Raman spectra of amino acids and peptides from machine learning polarizabilities. J Chem Inf Model. 2024; 64(12): 4601-4612.

[174]

Berrens ML, Kundu A, Calegari Andrade MF, Pham TA, Galli G, Donadio D. Nuclear quantum effects on the electronic structure of water and ice. J Phys Chem Lett. 2024; 15(26): 6818-6825.

[175]

Cao C, Cao S, Zhu Y, Dong H, Wang Y, Qian P. Thermal transports of 2D phosphorous carbides by machine learning molecular dynamics simulations. Int J Heat Mass Tran. 2024; 224:125359.

[176]

Chen R, Tian Y, Cao J, Ren W, Hu S, Zeng C. Unified deep learning network for enhanced accuracy in predicting thermal conductivity of bilayer graphene, hexagonal boron nitride, and their heterostructures. J Appl Phys. 2024; 135(14):145106.

[177]

Chen S, Jin X, Zhao W, Li T. Intricate short-range order in GeSn alloys revealed by atomistic simulations with highly accurate and efficient machine-learning potentials. Phys Rev Mater. 2024; 8(4):043805.

[178]

Chen Z, Berrens ML, Chan K-T, Fan Z, Donadio D. Thermodynamics of water and ice from a fast and scalable first-principles neuroevolution potential. J Chem Eng Data. 2024; 69(1): 128-140.

[179]

Cheng R, Zeng Z, Wang C, Ouyang N, Chen Y. Impact of strain-insensitive low-frequency phonon modes on lattice thermal transport in A2XB6-type perovskites. Phys Rev B. 2024; 109(5):054305.

[180]

Cheng Y, Zhang H, Xiong S, Volz S, Zhang T. Tuning the thermal resistance of SiGe phononic interfaces across ballistic and diffusive regimes. Int J Heat Mass Tran. 2024; 235:126144.

[181]

Deng Q, Liu Q, Yuan M, et al. Acceleration of multi-body molecular dynamics with customized parallel dataflow. IEEE Trans Parallel Distr Syst. 2024; 35(12): 2297-2314.

[182]

Dong H, Shi Y, Ying P, et al. Molecular dynamics simulations of heat transport using machine-learned potentials: a mini-review and tutorial on GPUMD with neuroevolution potentials. J Appl Phys. 2024; 135(16):161101.

[183]

Dong H, Li Z, Sun B, Zhou Y, Liu L, Yang J-Y. Thermal transport in disordered wurtzite ScAlN alloys using machine learning interatomic potentials. Mater Today Commun. 2024; 39:109213.

[184]

Fan H, Ying P, Fan Z, Chen Y, Li Z, Zhou Y. Anomalous strain-dependent thermal conductivity in the metal-organic framework HKUST-1. Phys Rev B. 2024; 109(4):045424.

[185]

Fang M, Tang S, Fan Z, Shi Y, Xu N, He Y. Transferability of machine learning models for predicting Raman spectra. J Phys Chem A. 2024; 128(12): 2286-2294.

[186]

Feng HF, Liu B, Bai JL, Zhang X, Song ZX, Guo Z-X. Nontrivial impact of interlayer coupling on thermal conductivity: opposing trends in in-plane and out-of-plane phonons. Phys Rev B. 2024; 110(21):214304.

[187]

Fine L, Lavén R, Wei Z, et al. Configuration and dynamics of hydride ions in the nitride-hydride catalyst Ca3CrN3H. Chem Mater. 2024; 37(1): 489-496.

[188]

Folkner DA, Chen Z, Barbalinardo G, Knoop F, Donadio D. Elastic moduli and thermal conductivity of quantum materials at finite temperature. J Appl Phys. 2024; 136(22):221101.

[189]

Fransson E, Wiktor J, Erhart P. Impact of organic spacers and dimensionality on templating of halide perovskites. ACS Energy Lett. 2024; 9(8): 3947-3954.

[190]

Fransson E, Rosander P, Erhart P, Wahnström G. Understanding correlations in BaZrO3: structure and dynamics on the nanoscale. Chem Mater. 2024; 36(1): 514-523.

[191]

Gabourie AJ, Polanco CA, McClellan CJ, et al. AI-accelerated atoms-to-circuits thermal simulation pipeline for integrated circuit design. In: 2024 IEEE International Electron Devices Meeting (IEDM); 2024: 1-4.

[192]

Huang G, Zhang L, Chu S, Xie Y, Chen Y. A highly ductile carbon material made of triangle rings: a study of machine learning. Appl Phys Lett. 2024; 124(4):043103.

[193]

Huang X, Li C, Yuan M, Shuai J, Li X-G, Hou Y. Unphysical grain size dependence of lattice thermal conductivity in Mg3(Sb, Bi)2: an atomistic view of concentration dependent segregation effects. Mater Today Phys. 2024; 43:101386.

[194]

Li G, Tang J, Zheng J, et al. Convergent thermal conductivity in strained monolayer graphene. Phys Rev B. 2024; 109(3):035420.

[195]

Li H, Zhu Y, Chu M, Dong H, Zhang G. Thermal conductivity of irregularly shaped nanoparticles from equilibrium molecular dynamics. J Phys Condens Matter. 2024; 36(34):345703.

[196]

Li K, Liu B, Zhou J, Sun Z. Revealing the crystallization dynamics of Sb-Te phase change materials by large-scale simulations. J Mater Chem C. 2024; 12(11): 3897-3906.

[197]

Li Y, Guo Y, Xiong S, Yi H. Enhanced heat transport in amorphous silicon via microstructure modulation. Int J Heat Mass Tran. 2024; 222:125167.

[198]

Li Z, Dong H, Wang J, Liu L, Yang J-Y. Active learning molecular dynamics-assisted insights into ultralow thermal conductivity of two-dimensional covalent organic frameworks. Int J Heat Mass Tran. 2024; 225:125404.

[199]

Li Z, Wang J, Dong H, Zhou Y, Liu L, Yang J-Y. Mechanistic insights into water filling effects on thermal transport of carbon nanotubes from machine learning molecular dynamics. Int J Heat Mass Tran. 2024; 235:126152.

[200]

Liu Y, Meng H, Zhu Z, Yu H, Zhuang L, Chu Y. Predicting mechanical and thermal properties of high-entropy ceramics via transferable machine-learning-potential-based molecular dynamics. Adv Funct Mater. 2024; 35(16):2418802.

[201]

Lyu S, Cheng R, Li H, Chen Y. Effects of local chemical ordering on the thermal transport in entropy-regulated PbSe-based thermoelectric materials. Appl Phys Lett. 2024; 124(23):232202.

[202]

Muhammed MM, Mokkath JH. Thermal characteristics of CsPbX3 (X = Cl/Br/I) halide perovskites. Mater Today Commun. 2024; 41:110628.

[203]

de Araujo Oliveira H, Fan Z, Harju A, Pereira LFC. Tuning the thermal conductivity of silicon phononic crystals via defect motifs: implications for thermoelectric devices and photovoltaics. ACS Appl Nano Mater. 2025; 8(9): 4364-4372.

[204]

Pegolo P, Grasselli F. Thermal transport of glasses via machine learning driven simulations. Frontiers in Materials. 2024; 11:1369034.

[205]

Qi Z, Sun X, Sun Z, et al. Interfacial optimization for AlN/diamond heterostructures via machine learning potential molecular dynamics investigation of the mechanical properties. ACS Appl Mater Interfaces. 2024; 16(21): 27998-28007.

[206]

Ru G, Qi W, Sun S, Tang K, Du C, Liu W. Interlayer friction and adhesion effects in penta-PdSe2-based van der Waals heterostructures. Adv Sci. 2024; 11(34):2400395.

[207]

Schäfer C, Fojt J, Lindgren E, Erhart P. Machine learning for polaritonic chemistry: accessing chemical kinetics. J Am Chem Soc. 2024; 146(8): 5402-5413.

[208]

Shi P, Xu Z. Exploring fracture of H-BN and graphene by neural network force fields. J Phys Condens Matter. 2024; 36(41):415401.

[209]

So S, Lee J-H. Unraveling interfacial thermal transport in β-Ga2O3/h-BN van der Waals heterostructures. Mater Today Phys. 2024; 46:101506.

[210]

So S, Seol JH, Lee J-H. Quasiballistic thermal transport in submicron-scale graphene nanoribbons at room-temperature. Nanoscale Adv. 2024; 6(11): 2919-2927.

[211]

Sonti S, Sun C, Chen Z, et al. Stability and dynamics of zeolite-confined gold nanoclusters. J Chem Theor Comput. 2024; 20(18): 8261-8269.

[212]

Sun C, Goel R, Kulkarni AR. Developing cheap but useful machine learning-based models for investigating high-entropy alloy catalysts. Langmuir. 2024; 40(7): 3691-3701.

[213]

Sun Z, Sun X, Qi Z, et al. Investigating thermal transport across the AlN/diamond interface via the machine learning potential. Diam Relat Mater. 2024; 147:111303.

[214]

Sun Z, Zhang D, Qi Z, et al. Insight into interfacial heat transfer of β-Ga2O3/diamond heterostructures via the machine learning potential. ACS Appl Mater Interfaces. 2024; 16(24): 31666-31676.

[215]

Tang J, Zheng J, Song X, Cheng L, Guo R. In-plane thermal conductivity of hexagonal boron nitride from 2D to 3D. J Appl Phys. 2024; 135(20):205105.

[216]

Tang Z, Wang X, He C, et al. Effects of thermal expansion and four-phonon interactions on the lattice thermal conductivity of the negative thermal expansion material ScF3. Phys Rev B. 2024; 110(13):134320.

[217]

Tian H, Dong W, Zhang W, Guo C. Machine learning techniques to probe the properties of molten salt phase change materials for thermal energy storage. Cell Rep Phys Sci. 2024; 5(7):102042.

[218]

Tian W, Wang C, Zhou K. The dynamic diversity and invariance of ab initio water. J Chem Theory Comput. 2024; 20(23): 10667-10675.

[219]

Timalsina B, Nguyen HG, Esfarjani K. Neuroevolution machine learning potential to study high temperature deformation of entropy-stabilized oxide MgNiCoCuZnO5. J Appl Phys. 2024; 136(15):155109.

[220]

Wan J, Li G, Guo Z, Qin H. Thermal transport in C6N7 monolayer: a machine learning based molecular dynamics study. J Phys Condens Matter. 2024; 37(2):025301.

[221]

Wang B, Ying P, Zhang J. The thermoelastic properties of monolayer covalent organic frameworks studied by machine-learning molecular dynamics. Nanoscale. 2024; 16(1): 237-248.

[222]

Wang C, Tian W, Zhou K. Ab initio simulation of liquid water without artificial high temperature. J Chem Theor Comput. 2024; 20:8202.

[223]

Wang R, Yu H, Zhong Y, Xiang H. Identifying direct bandgap silicon structures with high-throughput search and machine learning methods. J Phys Chem C. 2024; 128(30): 12677-12685.

[224]

Wang X, Yang J, Ying P, Fan Z, Zhang J, Sun H. Dissimilar thermal transport properties in κ-Ga2O3 and β-Ga2O3 revealed by homogeneous nonequilibrium molecular dynamics simulations using machine-learned potentials. J Appl Phys. 2024; 135(6):065104.

[225]

Wei P, Liu Y, Liu Y, Zhuang L, Yu H, Chu Y. High-throughput composition screening of high-entropy rare-earth monosilicates for superior CMAS corrosion resistance up to 1873 K. Corros Sci. 2024; 235:112172.

[226]

Wu S, Kang D, Yu X, Dai J. Thermal transport across armchair-zigzag graphene homointerface. Appl Phys Lett. 2024; 125(14):142206.

[227]

Wu X, Cheng Y, Huang S, Xiong S. Phonon resonance effect and defect scattering in covalently bonded carbon nanotube networks. Phys Rev Appl. 2024; 22(2):024038.

[228]

Wu X, Zhou W, Dong H, et al. Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics. J Chem Phys. 2024; 161(1):014103.

[229]

Wu X, Wu Y, Huang X, et al. Isotope interface engineering for thermal transport suppression in cryogenic graphene. Mater Today Phys. 2024; 46:101500.

[230]

Wu Z, Liu R, Wei N, Wang L. Unexpected reduction in thermal conductivity observed in graphene/h-BN heterostructures. Phys Chem Chem Phys. 2024; 26(5): 3823-3831.

[231]

Xu F, Wang D, Li Z, et al. Large-scale simulation of thermal conductivity in CaSiO3 perovskite with neuroevolution potential. Appl Phys Lett. 2024; 125(3):034104.

[232]

Xu N, Rosander P, Schäfer C, et al. Tensorial properties via the neuroevolution potential framework: fast simulation of infrared and Raman spectra. J Chem Theor Comput. 2024; 20(8): 3273-3284.

[233]

Yan Z, Zhu Y. Impact of lithium nonstoichiometry on ionic diffusion in tetragonal garnet-type Li7La3Zr2O12. Chem Mater. 2024; 36(23): 11551-11557.

[234]

Yang N, Chen R, Liu Y, Ren W, Hu S. Numerical evaluation of the effect of the twist angle on phonon hydrodynamics in twisted bilayer graphene. Phys Rev B. 2024; 110(24):245305.

[235]

Ying P, Natan A, Hod O, Urbakh M. Effect of interlayer bonding on superlubric sliding of graphene contacts: a machine-learning potential study. ACS Nano. 2024; 18(14): 10133-10141.

[236]

Yu L, Dong K, Yang Q, et al. Dynamic mesophase transition induces anomalous suppressed and anisotropic phonon thermal transport. NPJ Comput Mater. 2024; 10:1.

[237]

Yu M, Zhao Z, Guo W, Zhang Z. Fracture toughness of two-dimensional materials dominated by edge energy anisotropy. J Mech Phys Solid. 2024; 186:105579.

[238]

Yue J, Hu S, Xu B, et al. Unraveling the mechanisms of thermal boundary conductance at the graphene-silicon interface: insights from ballistic, diffusive, and localized phonon transport regimes. Phys Rev B. 2024; 109(11):115302.

[239]

Zeraati M, Oganov AR, Fan T, Solodovnikov SF. Searching for low thermal conductivity materials for thermal barrier coatings: a theoretical approach. Phys Rev Mater. 2024; 8(3):033601.

[240]

Zhang C, Sun J, Cheng J, Wang Q. Ultralow lattice thermal conductivity in quasi-one-dimensional BiI3 with suppressed phonon coherence. Phys Rev B. 2024; 110(17):174309.

[241]

Zhang G, Zhao S, Qin H, Liu Y. A unified strength criterion of diamane grain boundaries. Extrem Mech Lett. 2024; 68:102146.

[242]

Zhang J, Zhang H-C, Li W, Zhang G. Thermal conductivity of GeTe crystals based on machine learning potentials. Chin Phys B. 2024; 33(4):047402.

[243]

Zhang J, Zhang O, Bonati L, Hou T. Combining transition path sampling with data-driven collective variables through a reactivity-biased shooting algorithm. J Chem Theor Comput. 2024; 20(11): 4523-4532.

[244]

Zhang Z, Lu Q, Ding C, et al. Crystal structure prediction of lithium-beryllium alloys under pressure with distinctive electronic and dynamic behaviors. Phys Rev B. 2024; 110(17):174101.

[245]

Zhao Z, Yi M, Guo W, Zhang Z. General-purpose neural network potential for Ti-Al-Nb alloys towards large-scale molecular dynamics with ab initio accuracy. Phys Rev B. 2024; 110(18):184115.

[246]

Zhou W, Song B. Isotope effect on four-phonon interaction and lattice thermal transport: an atomistic study of lithium hydride. Phys Rev B. 2024; 110(20):205202.

[247]

Quek A, Ouyang N, Lin H-M, Delaire O, Guilleminot J. Enhancing robustness in machine-learning-accelerated molecular dynamics: a multi-model nonparametric probabilistic approach. Mech Mater. 2025; 202:105237.

[248]

Bao Y, Chen T, Miao Z, et al. Machine-learning-assisted understanding of depth-dependent thermal conductivity in lithium niobate induced by point defects. Adv Electron Mater. 2025:2400944.

[249]

Bro-Jørgensen W, Hamill JM, Donadio D, Solomon GC. Bridging the Gap: Using Machine Learning Force Fields to Simulate Gold Break Junctions at Pulling Speeds Closer to Experiments. ChemRxiv. 2025.

[250]

Cao C, Bai L, Cao S, et al. Structural and transport properties of LiTFSI/G3 electrolyte with machine-learned molecular dynamics. J Phys Chem C. 2025; 129(28): 13030-13039.

[251]

Cao S, Wang A, Fan Z, et al. Lattice thermal conductivity of 16 elemental metals from molecular dynamics simulations with a unified neuroevolution potential. J Appl Phys. 2025; 137(22):225101.

[252]

Chen Z, Yuan Y, Wang Y, et al. Softening of vibrational modes and anharmonicity induced thermal conductivity reduction in a-Si:H at high temperatures. Adv Electron Mater. 2025:2500104.

[253]

Chen F, Wang H, Jiang Y, Zhan L, Yang Y. Development of a neuroevolution machine learning potential of Al-Cu-Li alloys. Metals. 2025; 15(1):48.

[254]

Chen Z, Yuan Y, Ding W, Li S, An M, Zhang G. Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN. Chin Phys B. 2025.

[255]

Cheng R, Wang C, Ouyang N, Shen X, Chen Y. Strong crystalline thermal insulation induced by extended antibonding states. arXiv:2505.06926 [cond-mat.mtrl-sci]. 2025.

[256]

Dai J-P, Liu X, Li D. Insight into structural-functional relationship for conductive-radiative heat transfer in multi-scale thermal insulating carbon aerogels. Carbon. 2025; 243:120467.

[257]

Donadio D, Berrens ML, Zhao W, Chen S, Li T. Metastability and Ostwald step rule in the crystallisation of diamond and graphite from molten carbon. Nat Commun. 2025; 16(1):6324.

[258]

Du P-H, Wang Q, Sun Q, Jena P. Thermal rectification of sierpiński tetrahedron fractals assembled from supertetrahedral T2-type tin selenide clusters. Phys Rev B. 2025; 111(12):L121406.

[259]

Feng X, Pan S, Katagiri K, et al. Nanosecond structural evolution in shocked coesite. Sci Adv. 2025; 11(17):eads3139.

[260]

Hainer T, Fransson E, Dutta S, Wiktor J, Erhart P. A morphotropic phase boundary in MA1-xFAxPbI3: linking structure, dynamics, and electronic properties. arXiv:2503.22372 [cond-mat.mtrl-sci]. 2025.

[261]

Hao Y, Che J, Wang X, et al. Copper delocalization leads to ultralow thermal conductivity in chalcohalide CuBiSeCl2. Phys Rev B. 2025; 111(19):195207.

[262]

Hu Z-Q, Xie Y-F, Liu R, Shao J-L, Chen P-W. Prediction of reaction kinetics for CL-20 and host–guest crystals under high temperature and pressure using neuroevolution potential. J Chem Phys. 2025; 162(17):174503.

[263]

Hu S, Gu X. Approaching to low thermal conductivity limit in layered materials through full-spectrum phonon band engineering. Mater Today Phys. 2025; 52:101669.

[264]

Jia X, Bao Y, Cao S, Su Y, Qian P. Temperature effects on radiation damage in hcp-zirconium: a molecular dynamics study using a fine-tuned machine-learned potential. SSRN. 2025:156025.

[265]

Jiang W, Liang T, Xu J, Ouyang W. Strain-engineered anisotropic thermal transport in layered MoS2 structures. ACS Appl Mater Interfaces. 2025; 17(23): 34833-34844.

[266]

Jiang W, Bu H, Liang T, et al. Accurate modeling of interfacial thermal transport in van der Waals heterostructures via hybrid machine learning and registry-dependent potentials. arXiv:2505.00376 [physics]. 2025.

[267]

Kayastha P, Fransson E, Erhart P, Whalley L. Octahedral tilt-driven phase transitions in BaZrS3 chalcogenide perovskite. J Phys Chem Lett. 2025; 16(8): 2064-2071.

[268]

Lavén R, Fransson E, Erhart P, Juranyi F, Granroth GE, Karlsson M. Unraveling the nature of vibrational dynamics in CsPbI3 by inelastic neutron scattering and molecular dynamics simulations. J Phys Chem Lett. 2025; 16(19): 4812-4818.

[269]

Li K, Ma H. Decoding the thermal conductivity of ionic covalent organic frameworks: optical phonons as key determinants revealed by neuroevolution potential. Mater Today Phys. 2025; 54:101724.

[270]

Li Z, Han L, Ouyang T, Cao J, Yao Y, Wei X. Thermal and mechanical properties of deep-ultraviolet light sources candidate materials BeGeN2 by machine-learning molecular dynamics simulations. Phys Rev Mater. 2025; 9(3):033804.

[271]

Li S, Fang L, Liu T, et al. Machine learning-accelerated molecular dynamics calculations for investigating the thermal modulation by ferroelectric domain wall in KTN single crystals. Comput Mater Sci. 2025; 249:113674.

[272]

Li X, Liu R, Hou J, Zhang Z, Zhang Z. Trade-off model for strength-ductility relationship of metallic materials. Acta Mater. 2025; 289:120942.

[273]

Liang T, Xu K, Ying P, et al. Probing the ideal limit of interfacial thermal conductance in two-dimensional van der Waals heterostructures. arXiv:2502.13601 [physics.comp-ph]. 2025.

[274]

Linderälv C, Österbacka N, Wiktor J, Erhart P. Optical line shapes of color centers in solids from classical autocorrelation functions. npj Comput Mater. 2025; 11(1):101.

[275]

Lindgren E, Jackson AJ, Fransson E, et al. Predicting neutron experiments from first principles: a workflow powered by machine learning. J Mater Chem A. 2025.

[276]

Liu Y-Q, Dong H-K, Ren Y, Zhang W-G, Chen W. Crystallization of h-BN by molecular dynamics simulation using a machine learning interatomic potential. Comput Mater Sci. 2025; 249:113621.

[277]

Liu J, Zhang L. A physics-informed machine learning perspective to present the structures and properties of titanium matrixes and nanoclusters through atomic modeling. Nanoscale. 2025; 17(18): 11482-11501.

[278]

Liu Z, Sha J, Song G-L, Wang Z, Zhang Y. Understanding magnesium dissolution through machine learning molecular dynamics. Chem Eng J. 2025; 516:163578.

[279]

Liu J, Yin Q, He M, Zhou J. Constructing accurate machine learned potential and performing highly efficient atomistic simulation to predict structural and thermal properties: the case of Cu7PS6. Comput Mater Sci. 2025; 251:113686.

[280]

Liu Y, Fu Y, Gu F, Yu H, Zhuang L, Chu Y. Lattice-distortion-driven reduced lattice thermal conductivity in high-entropy ceramics. Adv Sci. 2025; 12(19):2501157.

[281]

Liu F, Mao R, Liu Z, Du J, Gao P. Probing phonon transport dynamics across an interface by electron microscopy. Nature. 2025; 642(8069): 941-946.

[282]

Lu C, Li Z, Sang X, et al. Stress-driven grain boundary structural transition in diamond by machine learning potential. Small. 2025; 21(16):2409092.

[283]

Lu C, Xu X, Cheng Y, et al. Interfacial thermal conductance at the gas-solid interface: microscopic energy transport mechanisms and the thermal rectification phenomenon. Int Commun Heat Mass Tran. 2025; 166:109153.

[284]

Luo W, Yin E, Wang L, Lian W, Wang N, Li Q. Heat transfer enhancement of N-Ga-Al semiconductors heterogeneous interfaces. Int J Heat Mass Tran. 2025; 244:126902.

[285]

Lyu S, Cao X, Zhou Y, Chen Y. Phonon scattering and thermal transport in PbSe and medium entropy thermoelectric PbSe0.5Te0.25S0.25 with defects of different dimensions. J Phys Chem Lett. 2025; 5429.

[286]

Moon J, Tian Z. Crystal-like thermal transport in amorphous carbon. npj Comput Mater. 2025; 11:1.

[287]

Oh M-H, Kim H-S, Cho S. Effects of wide phononic bandgaps on thermal conductance in silicon nanomeshes. J Phys Chem C. 2025; 129(8): 4183-4191.

[288]

Ouyang N, Shen D, Wang C, Cheng R, Wang Q, Chen Y. Positive temperature-dependent thermal conductivity induced by wavelike phonons in complex Ag-based argyrodites. Phys Rev B. 2025; 111(6):064307.

[289]

Pegolo P, Drigo E, Grasselli F, Baroni S. Transport coefficients from equilibrium molecular dynamics. J Chem Phys. 2025; 162(6):064111.

[290]

Rosander P, Fransson E, Österbacka N, Erhart P, Wahnström G. Untangling the Raman spectra of cubic and tetragonal BaZrO3. Phys Rev B. 2025; 111:064107.

[291]

Seifi A, Ghasemi M, Kateb M, Marashi P. Challenges in determining the thermal conductivity of core-shell nanowires by atomistic simulation. J Chem Phys. 2025; 162(12):124706.

[292]

Sun Z, Song Y, Qi Z, et al. Heat transport exploration through the GaN/diamond interfaces using machine learning potential. Int J Heat Mass Tran. 2025; 241:126724.

[293]

Sun X, Lu S, Shan S, Zhang Z, Chen J. Origin of superdiffusive thermal transport in one-dimensional van der Waals atomic chains. Phys Rev B. 2025; 111(20):205404.

[294]

Sun J, Li X, Li T, et al. Sliding and superlubric moiré twisting ferroelectric transition in HfO2. arXiv:2505.08164 [cond-mat.mtrl-sci]. 2025.

[295]

Tan Z, Wang S, Liu Y, et al. Coherent and incoherent phonon transport in graphene/h-BN superlattice: a machine learning potential. Phys E Low-dimens Syst Nanostruct. 2025; 172:116259.

[296]

Tuchinda N, Schuh CA. Grain boundary segregation spectra from a generalized machine-learning potential. Scr Mater. 2025; 264:116682.

[297]

Wang Y, Fan Z, Qian P, Caro MA, Ala-Nissila T. Density dependence of thermal conductivity in nanoporous and amorphous carbon with machine-learned molecular dynamics. Phys Rev B. 2025; 111(9):094205.

[298]

Wang L-D, Cheng Y-B, Zhou J. Molecular dynamics study on phonon coherent transport in III–V semiconductor superlattices. J Appl Phys. 2025; 137(11):115103.

[299]

Wang Y, Wang J, Yao G, et al. Phase transitions and dimensional cross-over in layered confined solids. Proc Natl Acad Sci. 2025; 122(17):e2502980122.

[300]

Wang X, Wu X, Ying P, Fan Z, Sun H. Interface phonon modes governing the ideal limit of thermal transport across diamond/cubic boron nitride interfaces. arXiv:2504.18473 [cond-mat.mtrl-sci]. 2025.

[301]

Wang Y, Xie L, Yang H, et al. Strong orbital-lattice coupling induces glassy thermal conductivity in high-symmetry single crystal BaTiS3. Phys Rev X. 2025; 15(1):011066.

[302]

Wang B, Li K, Zhang W, Sun Y, Zhou J, Sun Z. Thermal transport of GeTe/Sb2Te3 superlattice by large-scale molecular dynamics with machine-learned potential. J Phys Chem C. 2025; 129(13): 6386-6396.

[303]

Wang B, Wang B, Yan H, Cai Y. Oxygen vacancy-driven interfacial alloying and mixing for enhanced heat transfer in gallium oxide. Mater Today Phys. 2025; 54:101714.

[304]

Wen Z, Liu Y, Yang J, et al. Exceptional oxidation resistance of high-entropy carbides up to 3600°C. Adv Mater. 2025:2507254.

[305]

Wu X, Wu Z, Liang T, et al. Phonon coherence and minimum thermal conductivity in disordered superlattices. Phys Rev B. 2025; 111(8):085413.

[306]

Xiao Y, Liu Y, Zhang ZTB, et al. Optimizing thermoelectric performance of graphene antidot lattices via quantum transport and machine-learning molecular dynamics simulations. arXiv:2504.17450 [cond-mat.mes-hall]. 2025.

[307]

Xiao F, Xie Q-Y, Yu R, Li H, Zhang J, Wang B-T. Impact of lattice distortions and overdamped vibrations on the structural properties and thermal transport of strongly anharmonic AgSnSbTe3 crystals. Phys Rev B. 2025; 111(18):184304.

[308]

Xu B, Bai L, Xu S, Wu Q. Observing nucleation and crystallization of rocksalt LiF from molten state through molecular dynamics simulations with refined machine-learned force field. J Chem Phys. 2025; 162(23):234705.

[309]

Xu X, Wang S, Qin H, et al. A high-efficiency neuroevolution potential for tobermorite and calcium silicate hydrate systems with ab initio accuracy. arXiv:2505.18993 [cond-mat.mes-hall]. 2025.

[310]

Yan Z, Fan Z, Zhu Y. Improving robustness and training efficiency of machine-learned potentials by incorporating short-range empirical potentials. arXiv:2504.15925 [cond-mat.mtrl-sci]. 2025.

[311]

Yang J, Zhu X, McGaughey AJH, Ang YS, Ong W-L. Two-mode terms in Wigner transport equation elucidate anomalous thermal transport in amorphous silicon. Phys Rev B. 2025; 111(9):094206.

[312]

Yuan W-Z, Guo Y, Yi H-L. Consistency between the Green-Kubo formula and Lorentz model for predicting the infrared dielectric function of polar materials. Phys Rev B. 2025; 111(18):184310.

[313]

Yue J, Chen R, Ma D, Hu S. Nanoparticle-assisted phonon transport modulation in Si/Ge heterostructures using neuroevolution potential machine learning models. Chin Phys Lett. 2025; 42(3):036301.

[314]

Zeng Z, Fan Z, Simoncelli M, et al. Lattice distortion leads to glassy thermal transport in crystalline Cs3Bi2I6Cl3. arXiv:2407.18510 [cond-mat.mtrl-sci]. 2024.

[315]

Zeraati M, Oganov AR, Maltsev AP, Solodovnikov SF. Computational screening of complex oxides for next-generation thermal barrier coatings. J Appl Phys. 2025; 137(6):065106.

[316]

Zhang X, Xie Y, Tao F, Sun C, Tang D. Thermal transport in MoSi2N4 monolayer: a molecular dynamics study based on machine learning. Int J Heat Mass Tran. 2025; 250:127290.

[317]

Zhang H, Cheng M, Jiang X, et al. Neuroevolution potential for thermal transport in silicon carbide. J Mater Informatics. 2025; 5(3):34.

[318]

Zhang S, Chen P, Wei L, et al. Theoretical investigation on the dynamic thermal transport properties of graphene foam by machine-learning molecular dynamics simulations. Int J Therm Sci. 2025; 210:109631.

[319]

Zhang C, Chen Y, Wang Q, Jena P. Phonon localization and a boson-peak-like anomaly in twisted penta-PdSe2 bilayer. Nano Lett. 2025; 25(21): 8689-8695.

[320]

Zhang P, Zhang S, Qin Y, Du T, Wei L, Li X. Thermal switching characteristics and mechanism in multi-scale graphene foam composites: a machine-learning-based molecular dynamics exploration. SSRN. 2025.

[321]

Zhang L, Luo W, Liu R, Chen M, Yan Z, Cao K. Exploring the energy landscape of aluminas through machine learning interatomic potential. Phys Rev Mater. 2025; 9(2):023801.

[322]

Zhang Y, Li M, Xie F, et al. Synergetic strength-ductility enhancement of bcc W wires by coherent oxide nanocomposites pinning effect. Compos B Eng. 2025; 302:112558.

[323]

Zhang Z, Luo J, Wu H, Ma H, Zhu Y. Unveiling the microscopic origin of anomalous thermal conductivity in amorphous carbon. Sci Adv. 2025; 11(23):eadx5007.

[324]

Zhou X, Liu Y, Tang B, et al. Million-atom heat transport simulations of polycrystalline graphene approaching first-principles accuracy enabled by neuroevolution potential on desktop GPUs. J Appl Phys. 2025; 137(1):014305.

[325]

Zhou X, Xu Y, Chen Y, Tian F. Mechanism on lattice thermal conductivity of carbon-vacancy and porous medium entropy ceramics. Scr Mater. 2025; 259:116568.

[326]

Zhou W, Liang N, Wu X, Xiong S, Fan Z, Song B. Insight into the effect of force error on the thermal conductivity from machine-learned potentials. Mater Today Phys. 2025; 50:101638.

[327]

Zhou W, Liang N, Xiao W, Tong Z, Tian F, Song B. Ultrahigh interfacial thermal conductance for cooling gallium oxide electronics using cubic boron arsenide. arXiv:2501.11082 [cond-mat.mtrl-sci]. 2025.

[328]

Zhou W, Liu S. Two-dimensional ferroelectric crystal with temperature-invariant ultralow thermal conductivity. arXiv:2501.09990 [cond-mat.mtrl-sci]. 2025.

[329]

Zhu Z, Liu Y, Qin Y, et al. Tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure. Nat Commun. 2025; 16:1.

[330]

Fan Z, Garcia JH, Cummings AW, et al. Linear scaling quantum transport methodologies. Phys Rep. 2021; 903: 1-69.

[331]

Song Z, Han J, Henkelman G, Li L. Charge-optimized electrostatic interaction atom-centered neural network algorithm. J Chem Theor Comput. 2024; 20(5): 2088-2097.

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/