PDF
Abstract
Fischer–Tropsch synthesis is an important method for producing clean fuels and fine chemicals, but by-products such as CO2 bring severe challenges of low energy utilization and air pollution in commercial-scale production. In this work, the competitive adsorption selectivity of CO2 in a five-component gas mixture of tens of thousands of porous materials was calculated based on high-throughput screening and grand canonical Monte Carlo simulation. Seven promising CO2-type adsorbents were obtained under equimolar and industrial components, among which RUBTAK03 had a higher adsorption selectivity between 65 and 75. The CO2 adsorption capacity of KINNIG under a single component was 8.72 mmol/g at 298 K and 1 bar, surpassing most well-known metal–organic frameworks. This strong CO2 capture performance originates from three-dimensional interlaced channels, fluorinated organic ligands, and ultra-micropores, including channels and cages. In particular, this type of porous material composed of organic ligands or inorganic pillars containing fluorine atoms achieves an efficient capture of CO2 from air and industrial tail gas, providing theoretical guidance for the design of novel and efficient adsorbents.
Keywords
CO2 removal
/
gas separation
/
high-throughput calculations
/
Monte Carlo simulations
/
porous materials
Cite this article
Download citation ▾
Junpeng Yuan, Min Li, Hui Wang.
High-throughput computational screening of porous materials for CO2 removal from Fischer–Tropsch synthesis.
Materials Genome Engineering Advances, 2025, 3(3): e70023 DOI:10.1002/mgea.70023
| [1] |
Cheng Q, Tian Y, Lyu S, et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nat Commun. 2018; 9(1):3250.
|
| [2] |
Chen Y, Wei J, Duyar MS, Ordomsky VV, Khodakov AY, Liu J. Carbon-based catalysts for Fischer–Tropsch synthesis. Chem Soc Rev. 2021; 50(4): 2337-2366.
|
| [3] |
Qi F, Liu K, Ma D-K, et al. Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol. J Mater Chem A. 2021; 9(11): 6790-6796.
|
| [4] |
Han X, Zhao Q, Gong H, et al. Interface-Induced phase evolution and spatial distribution of Fe-based catalysts for Fischer–Tropsch synthesis. ACS Catal. 2023; 13(10): 6525-6535.
|
| [5] |
Xu Y, Zhang Z, Wu K, et al. Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis. Nat Commun. 2024; 15(1):7099.
|
| [6] |
Navarro V, Van Spronsen MA, Frenken JWM. In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst. Nat Chem. 2016; 8(10): 929-934.
|
| [7] |
Chen H, Lian Z, Zhao X, et al. The role of manganese in CoMnOx catalysts for selective long-chain hydrocarbon production via Fischer-Tropsch synthesis. Nat Commun. 2024; 15(1):10294.
|
| [8] |
Zhao Z, Li Y, Zhu H, Lyu Y, Ding Y. A review of CO/CO2 C-based catalysts in Fischer–Tropsch synthesis: from fundamental understanding to industrial applications. Chem Commun. 2023; 59(26): 3827-3837.
|
| [9] |
Wang P, Chen W, Chiang FK, et al. Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalysts. Sci Adv. 2018; 4(10):eaau2947.
|
| [10] |
Voelker S, Groll N, Bachmann M, et al. Towards carbon-neutral and clean propulsion in heavy-duty transportation with hydroformylated Fischer–Tropsch fuels. Nat Energy. 2024; 9(10): 1220-1229.
|
| [11] |
Zhai P, Li Y, Wang M, et al. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route. Chem. 2021; 7(11): 3027-3051.
|
| [12] |
Perez-Carbajo J, Gómez-Álvarez P, Bueno-Perez R, Merkling PJ, Calero S. Optimisation of the Fischer–Tropsch process using zeolites for tail gas separation. Phys Chem Chem Phys. 2014; 16(12):5678.
|
| [13] |
Mandal W, Fajal S, Desai AV, Ghosh SK. Metal-organic frameworks (MOFs) and related other advanced porous materials for sequestration of heavy metal-based toxic oxo-pollutants from water. Coord Chem Rev. 2025; 524:216326.
|
| [14] |
Yuan J, Liu X, Li M, Wang H. Design of nanoporous materials for trace removal of benzene through high throughput screening. Sep Purif Technol. 2023; 324:124558.
|
| [15] |
Li J, Zhou X, Wang J, Li X. Two-dimensional covalent organic frameworks (COFs) for membrane separation: a mini review. Ind Eng Chem Res. 2019; 58(34): 15394-15406.
|
| [16] |
Wang D-G, Qiu T, Guo W, et al. Covalent organic framework-based materials for energy applications. Energy Environ Sci. 2021; 14(2): 688-728.
|
| [17] |
Alabdulhadi RA, Khan S, Khan A, et al. Potential use of reticular materials (MOFs, ZIFs, and COFs) for hydrogen storage. ACS Appl Energy Mater. 2025; 8(3): 1397-1413.
|
| [18] |
Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev. 2020; 120(16): 8814-8933.
|
| [19] |
Wei R, Liu X, Ibragimov AB, Gao J. Recent strategies to improve the electroactivity of metal–organic frameworks for advanced electrocatalysis. Inf Funct Mater. 2024; 1(2): 181-206.
|
| [20] |
Li C, Qian G, Cui Y. Metal–organic frameworks for nonlinear optics and lasing. Inf Funct Mater. 2024; 1(2): 125-159.
|
| [21] |
Lin J, Ban T, Li T, et al. Machine-learning-assisted intelligent synthesis of UiO-66(Ce): balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene. Mater Genome Eng Adv. 2024; 2(3):e61.
|
| [22] |
Chen Z, Xu D, Zhu M, et al. Gigantic blue shift of two-photon–induced photoluminescence of interpenetrated metal–organic framework (MOF). Nanophotonics. 2023; 12(19): 3781-3791.
|
| [23] |
Xie D, Gao G, Tian B, et al. Porous metal–organic framework/ReS2 heterojunction phototransistor for polarization-sensitive visual adaptation emulation. Adv Mater. 2023; 35(26):2212118.
|
| [24] |
Yuan J, Liu X, Wang H, Li X. Evaluation and screening of porous materials containing fluorine for carbon dioxide capture and separation. Comput Mater Sci. 2023; 216:111872.
|
| [25] |
Yuan J, Niu C, Li M, Wang H. High-throughput computational screening of adsorbents and membrane materials for acetylene capture. Microporous Mesoporous Mater. 2023; 348:112396.
|
| [26] |
Xu D, Zhang Q, Huo X, Wang Y, Yang M. Advances in data-assisted high-throughput computations for material design. Mater Genome Eng Adv. 2023; 1: e11.
|
| [27] |
Chen Z, Lu D, Cao J, et al. Development of high-throughput wet-chemical synthesis techniques for material research, Mater. Genome Eng Adv. 2023; 1: e5.
|
| [28] |
Xu X, Lv JX, Wang Y, Li M, Wang Z, Wang H. High-throughput calculation of large spin Hall conductivity in heavy-metal-based antiperovskite compounds, Mater. Genome Eng Adv. 2024; e69.
|
| [29] |
Moghadam PZ, Islamoglu T, Goswami S, et al. Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nat Commun. 2018; 9(1):1378.
|
| [30] |
Gotzias A, Kouvelos E, Sapalidis A. Computing the temperature dependence of adsorption selectivity in porous solids. Surf Coat Technol. 2018; 350: 95-100.
|
| [31] |
Walton KS, Sholl DS. Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE J. 2015; 61(9): 2757-2762.
|
| [32] |
Mercado R, Fu R-S, Yakutovich AV, Talirz L, Haranczyk M, Smit B. In silico design of 2D and 3D covalent organic frameworks for methane storage applications. Chem Mater. 2018; 30(15): 5069-5086.
|
| [33] |
Ahmed A, Seth S, Purewal J, et al. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat Commun. 2019; 10(1):1568.
|
| [34] |
He Y, Zhang S, Han R, et al. Machine learning boosts molecular design of metal-organic framework for efficient CF4 capture. Sep Purif Technol. 2024; 351:128037.
|
| [35] |
Wilmer CE, Farha OK, Bae Y-S, Hupp JT, Snurr RQ. Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy Environ Sci. 2012; 5(12):9849.
|
| [36] |
Daou ASS, Fang H, Boulfelfel SE, Ravikovitch PI, Sholl DS. Machine learning and IAST-aided high-throughput screening of cationic and silica zeolites for alkane capture, storage, and separations. J Phys Chem C. 2024; 128(14): 6089-6105.
|
| [37] |
Anderson R, Gómez-Gualdrón DA. Deep learning combined with IAST to screen thermodynamically feasible MOFs for adsorption-based separation of multiple binary mixtures. J Chem Phys. 2021; 154(23):234102.
|
| [38] |
Bai P, Tsapatsis M, Siepmann JI. TraPPE-zeo: transferable potentials for phase equilibria force field for all-silica zeolites. J Phys Chem C. 2013; 117(46): 24375-24387.
|
| [39] |
Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990; 94(26): 8897-8909.
|
| [40] |
Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992; 114(25): 10024-10035.
|
| [41] |
Wilmer CE, Kim KC, Snurr RQ. An extended charge equilibration method. J Phys Chem Lett. 2012; 3(17): 2506-2511.
|
| [42] |
Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B. 1998; 102(14): 2569-2577.
|
| [43] |
Potoff JJ, Siepmann JI. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001; 47(7): 1676-1682.
|
| [44] |
Martín-Calvo A, Lahoz-Martín FD, Calero S. Understanding carbon monoxide capture using metal–organic frameworks. J Phys Chem C. 2012; 116(11): 6655-6663.
|
| [45] |
Darkrim F, Levesque D. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J Chem Phys. 1998; 109(12): 4981-4984.
|
| [46] |
Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 2012; 149(1): 134-141.
|
| [47] |
Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul. 2016; 42(2): 81-101.
|
| [48] |
Chung YG, Haldoupis E, Bucior BJ, et al. Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. J Chem Eng Data. 2019; 64(12): 5985-5998.
|
| [49] |
Ongari D, Yakutovich AV, Talirz L, Smit B. Building a consistent and reproducible database for adsorption evaluation in covalent–organic frameworks. ACS Cent Sci. 2019; 5(10): 1663-1675.
|
| [50] |
Zhao X, Bu X, Zhai Q-G, Tran H, Feng P. Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. J Am Chem Soc. 2015; 137(4): 1396-1399.
|
| [51] |
Cui X, Chen K, Xing H, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Sci Technol Humanit. 2016; 353(6295): 141-144.
|
| [52] |
Hu Y, Sengupta B, Long H, et al. Molecular recognition with resolution below 0.2 angstroms through thermoregulatory oscillations in covalent organic frameworks. Sci Technol Humanit. 2024; 384(6703): 1441-1447.
|
| [53] |
Zhou S, Shekhah O, Ramírez A, et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature. 2022; 606(7915): 706-712.
|
| [54] |
Nugent P, Belmabkhout Y, Burd SD, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature. 2013; 495(7439): 80-84.
|
| [55] |
Yan K, Tong G, Gao W, Li B, Sun W, Zhao L. Large-scale computational screening of highly effective zeolites for trace PH3 capture from hydrogen. AIChE J. 2024; 70(7):e18438.
|
| [56] |
Wright AM, Kapelewski MT, Marx S, Farha OK, Morris W. Transitioning metal–organic frameworks from the laboratory to market through applied research. Nat Mater. 2025; 24(2): 178-187.
|
| [57] |
Shekhah O, Belmabkhout Y, Chen Z, et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat Commun. 2014; 5(1):4228.
|
| [58] |
Zhai Q-G, Bu X, Mao C, Zhao X, Feng P. Systematic and dramatic tuning on gas sorption performance in heterometallic metal–organic frameworks. J Am Chem Soc. 2016; 138(8): 2524-2527.
|
| [59] |
Liao P-Q, Chen H, Zhou D-D, et al. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy Environ Sci. 2015; 8(3): 1011-1016.
|
| [60] |
Li B, Zhang Z, Li Y, et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal–organic framework. Angew Chem Int Ed. 2012; 51(6): 1412-1415.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.