Machine learning-accelerated computational screening of CrNiCu ternary alloy as superior cocatalyst for photocatalytic hydrogen evolution

Shouwei Sang , Kangyu Zhang , Lichang Yin , Gang Liu

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e70014

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e70014 DOI: 10.1002/mgea.70014
RESEARCH ARTICLE

Machine learning-accelerated computational screening of CrNiCu ternary alloy as superior cocatalyst for photocatalytic hydrogen evolution

Author information +
History +
PDF

Abstract

The development of cost-effective noble-metal-free cocatalysts with exceptional hydrogen evolution reaction (HER) activity is critical for advancing scalable and sustainable photocatalytic hydrogen production. Although platinum (Pt) remains a benchmark HER catalyst, its scarcity and high cost stimulates the search for viable alternatives. In this work, a machine learning (ML)-accelerated strategy is presented to screen highly active ternary CrNiCu alloys. Combining with density functional theory calculations, XGBoost regression models were trained to predict hydrogen adsorption energies and water dissociation energy barriers on CrNiCu alloy surfaces. Consequently, the theoretical exchange current densities were predicted for all possible compositions of CrNiCu alloys, enabling the identification of alloy catalysts with composition of 10~30 at.% Cr, 30–50 at.% Ni, and 20–60 at.% Cu that exhibits superior HER activity than Pt. Stability assessment of optimal ternary CrNiCu alloys further confirms their excellent resistance to element segregation and hydroxyl poisoning under operational conditions. This work not only identifies promising ternary CrNiCu alloys of non-noble HER catalysts but also establishes an efficient ML-accelerated computational framework for the discovery of durable high-activity alloys for renewable energy applications.

Keywords

cocatalyst / CrNiCu ternary alloy / density functional theory calculation / hydrogen evolution reaction / machine learning / photocatalytic water splitting

Cite this article

Download citation ▾
Shouwei Sang, Kangyu Zhang, Lichang Yin, Gang Liu. Machine learning-accelerated computational screening of CrNiCu ternary alloy as superior cocatalyst for photocatalytic hydrogen evolution. Materials Genome Engineering Advances, 2025, 3(2): e70014 DOI:10.1002/mgea.70014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev. 2014; 43(22): 7787-7812.

[2]

Xiao N, Li S, Li X, Ge L, Gao Y, Li N. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chin J Catal. 2020; 41(4): 642-671.

[3]

Song H, Luo S, Huang H, Deng B, Ye J. Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 2022; 7(3): 1043-1065.

[4]

Qi J, Zhang W, Cao R. Solar-to-hydrogen energy conversion based on water splitting. Adv Energy Mater. 2018; 8(5):1701620.

[5]

Zhang J, Hu W, Cao S, Piao L. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020; 13(9): 2313-2322.

[6]

Dang VH, Nguyen TA, Le MV, Nguyen DQ, Wang YH, Wu JCS. Photocatalytic hydrogen production from seawater splitting: current status, challenges, strategies and prospective applications. Chem Eng J. 2024; 484:149213.

[7]

Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res. 2013; 46(8): 1900-1909.

[8]

Xia M, Zhao X, Zhang Y, Pan W, Leung DYC. Rational catalyst design for spatial separation of charge carriers in a multi-component photocatalyst for effective hydrogen evolution. J Mater Chem A. 2022; 10(48): 25380-25405.

[9]

Shi X, Dai C, Wang X, et al. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat Commun. 2022; 13(1):1287.

[10]

Xu Q, Zhu B, Jiang C, Cheng B, Yu J. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance. Sol RRL. 2018; 2(3):1800006.

[11]

Hagiwara H, Nozawa I, Hayakawa K, Ishihara T. Hydrogen production by photocatalytic water splitting of aqueous hydrogen iodide over Pt/alkali metal tantalates. SEF. 2019; 3(11): 3021-3028.

[12]

Liu M, Zhang G, Liang X, et al. Rh/Cr2O3 and CoOx cocatalysts for efficient photocatalytic water splitting by poly (triazine imide) crystals. Angew Chem Int Ed. 2023; 62(37):e202304694.

[13]

Shen R, Xie J, Xiang Q, Chen X, Jiang J, Li X. Ni-based photocatalytic H2-production cocatalysts. Chin J Catal. 2019; 40(3): 240-288.

[14]

Di T, Zhang L, Cheng B, Yu J, Fan J. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production. J Mater Sci Technol. 2020; 56: 170-178.

[15]

Qiu P, Lu M, Cheng G, Li W, Liu L, Xiong J. Co-implantation of oxygen vacancy and well-dispersed Cu cocatalyst into TiO2 nanoparticles for promoting solar-to-hydrogen evolution. Int J Hydrogen Energy. 2023; 48(3): 933-942.

[16]

Li J, Zhang L, Li J, An P, Hou Y, Zhang J. Nanoconfined growth of carbon-encapsulated cobalts as cocatalysts for photocatalytic hydrogen evolution. ACS Sustain Chem Eng. 2019; 7(16): 14023-14030.

[17]

Zhang X, Ma X, Ye Y, et al. Enhanced photocatalytic hydrogen evolution with a mixed-valence iron metal-organic framework. Chem Eng J. 2023; 456:140939.

[18]

Liu Y, Sun Z, Hu YH. Bimetallic cocatalysts for photocatalytic hydrogen production from water. Chem Eng J. 2021; 409:128250.

[19]

Lin Z, Li J, Li L, Yu L, Li W, Yang G. Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys. J Mater Chem A. 2017; 5(2): 773-781.

[20]

Li Z, Wang X, Tian W, Meng A, Yang L. CoNi bimetal cocatalyst modifying a hierarchical ZnIn2S4 nanosheet-based microsphere noble-metal-free photocatalyst for efficient visible-light-driven photocatalytic hydrogen production. ACS Sustain Chem Eng. 2019; 7(24): 20190-20201.

[21]

Naniwa S, Kato K, Yamamoto A, Yoshida H, Yamakata A. Particle size dependent trap states of photoexcited carriers in anatase TiO2 nanoparticles. J Phys Chem C. 2023; 127(8): 4295-4302.

[22]

Nørskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005; 152(3): J23.

[23]

Zheng Y, Jiao Y, Zhu Y, et al. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J Am Chem Soc. 2016; 138(49): 16174-16181.

[24]

Dinh C.-T, Jain A, de Arquer FPG, et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat Energy. 2019; 4(2): 107-114.

[25]

Dong C, Li Y, Cheng D, et al. Supported metal clusters: fabrication and application in heterogeneous catalysis. ACS Catal. 2020; 10(19): 11011-11045.

[26]

Zhang Y, Liu X, Wang W. Theoretical calculation assisted by machine learning accelerate optimal electrocatalyst finding for hydrogen evolution reaction. Chemelectrochem. 2024; 11(13):e202400084.

[27]

Xu W, Diesen E, He T, Reuter K, Margraf JT. Discovering high entropy alloy electrocatalysts in vast composition spaces with multiobjective optimization. J Am Chem Soc. 2024; 146(11): 7698-7707.

[28]

Xie J. Prospects of materials genome engineering frontiers. MGE Adv. 2023; 1(2):e17.

[29]

Wang WY, Zhang S, Li G, et al. Artificial intelligence enabled smart design and manufacturing of advanced materials: the endless Frontier in AI+ era. MGE Adv. 2024; 2(3):e56.

[30]

Hart GLW, Mueller T, Toher C, Curtarolo S. Machine learning for alloys. Nat Rev Mater. 2021; 6(8): 730-755.

[31]

Yang Z, Gao W. Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv Sci. 2022; 9(12):2106043.

[32]

Xu D, Zhang Q, Huo X, Wang Y, Yang M. Advances in data-assisted high-throughput computations for material design. MGE Adv. 2023; 1(1):e11.

[33]

Batchelor TAA, Pedersen JK, Winther SH, Castelli IE, Jacobsen KW, Rossmeisl J. High-entropy alloys as a discovery platform for electrocatalysis. Joule. 2019; 3(3): 834-845.

[34]

Pedersen JK, Batchelor TAA, Bagger A, Rossmeisl J. High-Entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020; 10(3): 2169-2176.

[35]

Zhou Q, Shou H, Qiao S, et al. Analyzing the active site and predicting the overall activity of alloy catalysts. J Am Chem Soc. 2024; 146(22): 15167-15175.

[36]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996; 6(1): 15-50.

[37]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54(16): 11169-11186.

[38]

Hammer B, Hansen LB, Nørskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B. 1999; 59(11): 7413-7421.

[39]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50(24): 17953-17979.

[40]

Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B. 2004; 108(46): 17886-17892.

[41]

Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000; 113(22): 9901-9904.

[42]

Hansen HA, Rossmeisl J, Nørskov JK. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys. 2008; 10(25): 3722-3730.

[43]

Vojvodic A, Nørskov JK, Abild-Pedersen F. Electronic structure effects in transition metal surface chemistry. Top Catal. 2014; 57(1): 25-32.

[44]

Yang TT, Saidi WA. The Bell-Evans-Polanyi relation for hydrogen evolution reaction from first-principles. npj Comput Mater. 2024; 10(1): 98.

[45]

Qiu C, Hu B, Zhou J, et al. The phase equilibria of the Cu-Cr-Ni and Cu-Cr-Ag systems: experimental investigation and thermodynamic modeling. Calphad. 2020; 68:101734.

[46]

Mavrikakis M, Rempel J, Greeley J, Hansen LB, Nørskov JK. Atomic and molecular adsorption on Rh(111). J Chem Phys. 2002; 117(14): 6737-6744.

[47]

Greeley J, Nørskov JK. Large-scale, density functional theory-based screening of alloys for hydrogen evolution. Surf Sci. 2007; 601(6): 1590-1598.

[48]

Phatak AA, Delgass WN, Ribeiro FH, Schneider WF. Density functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and Pt. J Phys Chem C. 2009; 113(17): 7269-7276.

[49]

Yin X, Sun X, Wang H, Han E.-H. Adsorption and dissociation of water on halogen pre-adsorbed Ni(111) and Ni-Cr(111) surfaces: a DFT study. Solid State Commun. 2020; 321:114040.

[50]

Lundberg SM, Lee S. I. A unified approach to interpreting model predictions. In: Paper presented at: Neural Information Processing Systems; 2017.

[51]

Lundberg SM, Erion G, Chen H, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020; 2(1): 56-67.

[52]

Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci U S A. 2011; 108(3): 937-943.

[53]

Wang X, Liu X, Fang J, et al. Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst. Nat Commun. 2024; 15(1):1137.

[54]

Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys. 2004; 120(21): 10240-10246.

[55]

Santen RAV, Neurock M, Shetty SG. Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. Chem Rev. 2010; 110(4): 2005-2048.

[56]

Sheng W, Myint M, Chen JG, Yan Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci. 2013; 6(5): 1509-1512.

[57]

Crawley JWM, Gow IE, Lawes N, et al. Heterogeneous trimetallic nanoparticles as catalysts. Chem Rev. 2022; 122(6): 6795-6849.

[58]

Ren H, Zhang Z, Geng Z, et al. Gradient oh desorption facilitating alkaline hydrogen evolution over ultrafine quinary nanoalloy. Adv Energy Mater. 2024; 14(25):2400777.

[59]

Wang J, Xin S, Xiao Y, et al. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew Chem Int Ed. 2022; 61(30):e202202518.

[60]

Gokhale AA, Dumesic JA, Mavrikakis M. On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc. 2008; 130(4): 1402-1414.

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/