Domain and switching dynamics in antiferroelectric PbZrO3: Machine learning molecular dynamics simulation

Yubai Shi , Ruoyu Wang , Zhicheng Zhong , Yao Wu , Shi Liu , Liang Si , Ri He

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e70012

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e70012 DOI: 10.1002/mgea.70012
RESEARCH ARTICLE

Domain and switching dynamics in antiferroelectric PbZrO3: Machine learning molecular dynamics simulation

Author information +
History +
PDF

Abstract

Antiferroelectric (AFE) materials have received great attention because of their potential applications in the energy sector. Nevertheless, the properties of AFE materials have not been explored for a long time, especially the atomic-scale understanding of AFE domain walls. Here, using first-principles-based machine learning potentials, we identify the atomic structures, energies, and dynamic properties of the domain walls for AFE lead zirconate. It is found that the domain wall can reduce the critical antiferroelectric-ferroelectric transition field. During the electric field-driven polarization switching process, the domain wall is immobile. Importantly, we observe that a distinct domain structure spontaneously forms in bulk lead zirconate upon annealing at 300 K. The domain structure exhibits an alternating array of clockwise–anticlockwise vortexes along radial with continuous polarization rotation. This anomalous AFE vortex is derived from the energy degeneracy in four possible orientations of the polarization order, which can enhance the dielectric response in the terahertz. The current results give an implication for the emergence of AFE vortex in AFE materials as well as ferroelectric materials.

Keywords

antiferroelectricity / domain wall / machine learning / molecular dynamics

Cite this article

Download citation ▾
Yubai Shi, Ruoyu Wang, Zhicheng Zhong, Yao Wu, Shi Liu, Liang Si, Ri He. Domain and switching dynamics in antiferroelectric PbZrO3: Machine learning molecular dynamics simulation. Materials Genome Engineering Advances, 2025, 3(2): e70012 DOI:10.1002/mgea.70012

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Očenášek J, Minár J, Alcalá J. Dynamics of lattice disorder in perovskite materials, polarization nanoclusters and ferroelectric domain wall structures. npj Comput Mater. 2023; 9(1):118.

[2]

Nataf G, Guennou M, Gregg J, et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat Rev Phys. 2020; 2(11): 634-648.

[3]

McGilly L, Yudin P, Feigl L, Tagantsev A, Setter N. Controlling domain wall motion in ferroelectric thin films. Nat Nanotechnol. 2015; 10(2): 145-150.

[4]

Liu S, Grinberg I, Rappe AM. Exploration of the intrinsic inertial response of ferroelectric domain walls via molecular dynamics simulations. Appl Phys Lett. 2013; 103(23):232907.

[5]

Liu S, Cohen R. Origin of stationary domain wall enhanced ferroelectric susceptibility. Phys Rev B. 2017; 95(9):094102.

[6]

Zhang X, Wang B, Ji Y, et al. First-principles calculations of domain wall energies of prototypical ferroelectric perovskites. Acta Mater. 2023; 242:118351.

[7]

Yang T, Wang B, Hu J-M, Chen L-Q. Domain dynamics under ultrafast electric-field pulses. Phys Rev Lett. 2020; 124(10):107601.

[8]

He R, Wang H, Liu F, Liu S, Liu H, Zhong Z. Unconventional ferroelectric domain switching dynamics in CuInP2S6 from first principles. Phys Rev B. 2023; 108(2):024305.

[9]

Si Y, Zhang T, Liu C, et al. Antiferroelectric oxide thin-films: fundamentals, properties, and applications. Prog Mater Sci. 2024; 142:101231.

[10]

Tanaka M, Saito R, Tsuzuki K. Electron microscopic studies on domain structure of PbZrO3. Jpn J Appl Phys. 1982; 21(2R):291.

[11]

Liu Y, Niu R, Majchrowski A, et al. Translational boundaries as incipient ferrielectric domains in antiferroelectric PbZrO 3. Phys Rev Lett. 2023; 130(21):216801.

[12]

Liu S, Grinberg I, Rappe AM. Intrinsic ferroelectric switching from first principles. Nature. 2016; 534(7607): 360-363.

[13]

Zhang L, Han J, Wang H, Car R, E W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett. 2018; 120(14):143001.

[14]

Shi Y, He R, Zhang B, Zhong Z. Revisiting the phase diagram and piezoelectricity of lead zirconate titanate from first principles. Phys Rev B. 2024; 109(17):174104.

[15]

Shi Y, Shan Y, Wu H, Zhong Z, Li R-W, He R. Compositional ordering driven morphotropic phase boundary in ferroelectric solid solutions. Phys Rev B. 2024; 110(5):054102.

[16]

Wang H, Zhang L, Han J, Weinan E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun. 2018; 228: 178-184.

[17]

Zhong W, King-Smith R, Vanderbilt D. Giant LO-TO splittings in perovskite ferroelectrics. Phys Rev Lett. 1994; 72(22): 3618-3621.

[18]

Caillol J, Levesque D, Weis J. Theoretical calculation of ionic solution properties. J Chem Phys. 1986; 85(11): 6645-6657.

[19]

Wang D, Hlinka J, Bokov A, et al. Fano resonance and dipolar relaxation in lead-free relaxors. Nat Commun. 2014; 5(1):5100.

[20]

Zhang H, Thong H-C, Bastogne L, Gui C, He X, Ghosez P. Finite-temperature properties of the antiferroelectric perovskite PbZrO 3 from a deep-learning interatomic potential. Phys Rev B. 2024; 110(5):054109.

[21]

Fesenko O, Kolesova R, Sindeyev YG. The structural phase transitions in lead zirconate in super-high electric fields. Ferroelectrics. 1978; 20(1): 177-178.

[22]

Bian R, He R, Pan E, et al. Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science. 2024; 385(6704): 57-62.

[23]

He R, Zhang B, Wang H, et al. Ultrafast switching dynamics of the ferroelectric order in stacking-engineered ferroelectrics. Acta Mater. 2024; 262:119416.

[24]

Wei X-K, Tagantsev AK, Kvasov A, Roleder K, Jia C-L, Setter N. Ferroelectric translational antiphase boundaries in nonpolar materials. Nat Commun. 2014; 5(1):3031.

[25]

Yu Z, Fan N, Fu Z, et al. Room-temperature stabilizing strongly competing ferrielectric and antiferroelectric phases in PbZrO3 by strain-mediated phase separation. Nat Commun. 2024; 15(1):3438.

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

34

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/