Finite-temperature properties of NbO2 from a deep-learning interatomic potential

Xinhang Li , Yongqiang Wang , Tianyu Jiao , Zhaoxin Liu , Chuanle Yang , Ri He , Liang Si

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e70011

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e70011 DOI: 10.1002/mgea.70011
RESEARCH ARTICLE

Finite-temperature properties of NbO2 from a deep-learning interatomic potential

Author information +
History +
PDF

Abstract

Using first-principles-based machine-learning potential, molecular dynamics (MD) simulations are performed to investigate the micro-mechanism in phase transition of NbO2. Treating the DFT results of the low- and intermediate-temperature phases of NbO2 as training data in the deep-learning model, we successfully constructed an interatomic potential capable of accurately reproducing the phase transitions from low-temperature (pressure) to high-temperature (pressure) regimes. Notably, our simulations predict a high-pressure monoclinic phase (>14 GPa) without treating its information in the training set, consistent with previous experimental findings, demonstrating the reliability of the constructed interatomic potential. We identified the Nb-dimers as the key structural motif governing the phase transitions. At low temperatures, the displacements of the Nb-dimers drive the transition between the I41/a (α-NbO2) and I41 (β-NbO2) phases, while at high temperatures, Nb ions are prone to being equally distributed and the disappearance of Nb-dimers leads to the stabilization of a high-symmetry P42/mnm phase. These findings elucidate the structural and dynamical mechanisms underlying the structural properties of NbO2 and highlight the utility of combining DFT and deep potential MD methods for studying complex phase transitions in transition metal oxides.

Keywords

deep-learning model / density functional theory / interatomic potential / molecular dynamics / phase transitions

Cite this article

Download citation ▾
Xinhang Li, Yongqiang Wang, Tianyu Jiao, Zhaoxin Liu, Chuanle Yang, Ri He, Liang Si. Finite-temperature properties of NbO2 from a deep-learning interatomic potential. Materials Genome Engineering Advances, 2025, 3(2): e70011 DOI:10.1002/mgea.70011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ngai JH, Walker FJ, Ahn CH. Correlated oxide physics and electronics. Annu Rev Mater Res. 2014; 44(1): 1-17.

[2]

Tokura Y. Correlated-electron physics in transition-metal oxides. Phys Today. 2003; 56(7): 50-55. ISSN 0031-9228.

[3]

Dagotto E. Complexity in strongly correlated electronic systems. Science. 2005; 309(5732): 257-262.

[4]

Tokura Y, Nagaosa N. Orbital physics in transition-metal oxides. Science. 2000; 288(5465): 462-468.

[5]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964; 136(3B): B864-B871.

[6]

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965; 140(4A): A1133-A1138.

[7]

Aryasetiawan F, Gunnarsson O. The gw method. Rep Prog Phys. 1998; 61(3): 237-312.

[8]

Hedin L. On correlation effects in electron spectroscopies and the gw approximation. J Phys Condens Matter. 1999; 11(42): R489-R528.

[9]

Lucia R. The gw approximation: content, successes and limitations. Wiley Interdiscip Rev Comput Mol Sci. 2018; 8(3):e1344.

[10]

Aryasetiawan F, Gunnarsson O. Electronic structure of nio in the GW approximation. Phys Rev Lett. 1995; 74(16): 3221-3224.

[11]

Metzner W, Vollhardt D. Correlated lattice fermions in d = ∞ dimensions. Phys Rev Lett. 1989; 62(3): 324-327.

[12]

Georges A, Kotliar G, Krauth W, Rozenberg MJ. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev Mod Phys. 1996; 68(1): 13-125.

[13]

Kotliar G, Vollhardt D. Strongly correlated materials: insights from dynamical mean-field theory. Phys Today. 2004; 57(3): 53-60.

[14]

Held K, Andersen OK, Feldbacher M, Yamasaki A, Yang YF. Bandstructure meets many-body theory: the lda+ dmft method. J Phys Condens Matter. 2008; 20(6):064202.

[15]

Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron. 2018; 99(6): 1129-1143.

[16]

Rapaport DC. The Art of Molecular Dynamics Simulation. Cambridge University Press; 2004.

[17]

Hafner J. Ab-initio simulations of materials using vasp: density-functional theory and beyond. J Comput Chem. 2008; 29(13): 2044-2078.

[18]

Zhang L, Han J, Wang H, Car R, Weinan E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett. 2018; 120(14):143001.

[19]

Zhou L, Fu X.-P, Wang R, et al. Dynamic phase transitions dictate the size effect and activity of supported gold catalysts. Sci Adv. 2024; 10(51):eadr4145.

[20]

Huang J, Qian Z, Hu Y, Yu Q, Liu S. Multiscale simulations of ferroelectric oxides. In: Ferroelectrics: Advances in fundamental studies and emerging applications. IOP Publishing; 2022:3-1.

[21]

Wu J, Yang J, Liu Y.-J, et al. Universal interatomic potential for perovskite oxides. Phys Rev B. 2023; 108(18):L180104.

[22]

He R, Wu H, Qin X, Chen X, Zhong Z. Pressure-induced one-dimensional oxygen ion diffusion channel in lead apatite. Phys Rev B. 2023; 108(22):224114.

[23]

He R, Xu H, Yang P, Chang K, Wang H, Zhong Z. Ferroelastic twin-wall-mediated ferroelectriclike behavior and bulk photovoltaic effect in srtio3. Phys Rev Lett. 2024; 132(17):176801.

[24]

Wu J, Yang J, Ma L, Zhang L, Liu S. Modular development of deep potential for complex solid solutions. Phys Rev B. 2023; 107(14):144102.

[25]

Hu Y, Yang J, Liu S. Giant piezoelectric effects of topological structures in stretched ferroelectric membranes. Phys Rev Lett. 2024; 133(4):046802.

[26]

Li Z, Wang J, Yang C, Liu L, Yang J.-Y. Thermal transport across tio2–h2o interface involving water dissociation: ab initio-assisted deep potential molecular dynamics. J Chem Phys. 2023; 159(14).

[27]

Shi Y, He R, Zhang B, Zhong Z. Revisiting the phase diagram and piezoelectricity of lead zirconate titanate from first principles. Phys Rev B. 2024; 109(17):174104.

[28]

Shi Y, Shan Y, Wu H, Zhong Z, Li R.-W, He R. Compositional ordering driven morphotropic phase boundary in ferroelectric solid solutions. Phys Rev B. 2024; 110(5):054102.

[29]

Wisesa P, Andolina CM, Saidi WA. Development and validation of versatile deep atomistic potentials for metal oxides. J Phys Chem Lett. 2023; 14(2): 468-475.

[30]

Wisesa P, Tadano T, Saidi WA. Deep-learning neural network potentials for titanate perovskites. Comput Mater Sci. 2025; 250:113719.

[31]

Kumar Nandi S. Resistive switching in transition metal oxides for integrated non-volatile memory. 2017.

[32]

Zhang G, Qin G, Yu G, Hu Q, Fu H, Shao C. Ab initio investigation on a promising transparent conductive oxide, Nb: Sno2. Thin Solid Films. 2012; 520(18): 5965-5970.

[33]

Lee D, Cha E, Park J, et al. NbO2-based frequency storable coupled oscillators for associative memory application. IEEE J Electr Devices Soc. 2018; 6: 250-253.

[34]

Kumar S, Paul Strachan J, Williams RS. Chaotic dynamics in nanoscale NbO2 mott memristors for analogue computing. Nature. 2017; 548(7667): 318-321.

[35]

Jiang B, Ke SW, Tao ZP, et al. In-depth analysis of core-shell filaments in nonvolatile Nbox memristive device as an artificial synapse for multifunctional bionic applications. Sci China Technol Sci. 2023; 66(12): 3596-3603.

[36]

Eyert V. The metal-insulator transition of NbO2: an embedded peierls instability. Europhys Lett. 2002; 58(6): 851-856.

[37]

O’Hara A, Demkov AA. Nature of the metal-insulator transition in NbO2. Phys Rev B. 2015; 91(9):094305.

[38]

Rana R, Michael Klopf J, Grenzer J, Schneider H, Helm M, Pashkin A. Nonthermal nature of photoinduced insulator-to-metal transition in NbO2. Phys Rev B. 2019; 99(4):041102.

[39]

Haines J, Léger JM, Pereira AS, Häusermann D, Hanfland M. High-pressure structural phase transitions in semiconducting niobium dioxide. Phys Rev B. 1999; 59(21): 13650-13656.

[40]

Janninck RF, Whitmore DH. Electrical conductivity and thermoelectric power of niobium dioxide. J Phys Chem Solid. 1966; 27(6-7): 1183-1187.

[41]

Seta K, Naito K. Calorimetric study of the phase transition in doped NbO2. J Chem Thermodyn. 1982; 14(10): 937-949.

[42]

Kresse G, Fürthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996; 6(1): 15-50.

[43]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54(16): 11169-11186.

[44]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758-1775.

[45]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[46]

Perdew JP, Chevary JA, Vosko SH, et al. Atoms molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1992; 46(11): 6671-6687.

[47]

Anisimov VI, Zaanen J, Andersen OK. Band theory and mott insulators: hubbard u instead of stoner i. Phys Rev B. 1991; 44(3): 943-954. https://link.aps.org/doi/10.1103/PhysRevB.44.943

[48]

Liechtenstein AI, Anisimov VI, Zaanen J. Density-functional theory and strong interactions: orbital ordering in mott-hubbard insulators. Phys Rev B. 1995; 52(8): R5467-R5470.

[49]

O’Hara A, Nunley TN, Posadas AB, Zollner S, Demkov AA. Electronic and optical properties of NbO2. J Appl Phys. 2014; 116(21).

[50]

DwaraknathBayerl SD, Andolina CM, Saidi WA. Convergence acceleration in machine learning potentials for atomistic simulations. Digital Discovery. 2022; 1(1): 61-69.

[51]

Bolzan AA, Fong C, Kennedy BJ, Howard CJ. A powder neutron diffraction study of semiconducting and metallic niobium dioxide. J Solid State Chem. 1994; 113(1): 9-14.

[52]

Zhang Y, Wang H, Chen W, et al. A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput Phys Commun. 2020; 253:107206.

[53]

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995; 117(1): 1-19.

[54]

Thompson AP, Aktulga HM, Berger R, et al. Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022; 271:108171.

[55]

Zhang L, Han J, Wang H, Saidi W, Car R, Weinan E. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. Adv Neural Inf Process Syst. 2018; 31.

[56]

Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984; 81(1): 511-519.

[57]

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981; 52(12): 7182-7190.

[58]

Kulmus K, Gemming S, Schreiber M, Pashov D, Acharya S. Theoretical evidence for the peierls transition in NbO2. Phys Rev B. 2021; 104(3):035128.

[59]

Sakata K. Electrical and magnetic properties of NbO2. J Phys Soc Jpn. 1969; 26(3):867.

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/