High throughput characterization method of electrical and phonon properties by dielectric resonant spectroscopy

Ziru Wang , Mingyang Qin , Peng Zhang , Yiguo Xu , Shiting Que , Feng Yan , X.-D. Xiang

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (3) : e70010

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (3) : e70010 DOI: 10.1002/mgea.70010
RESEARCH ARTICLE

High throughput characterization method of electrical and phonon properties by dielectric resonant spectroscopy

Author information +
History +
PDF

Abstract

With the advancement of Materials Genome Initiative, there is an urgent need for nondestructive, rapid characterization methods for obtaining electrical transport properties and phonon information of materials. In this article, we develop a method using the dielectric resonant spectroscopies of materials to derive critical parameters such as conduction electron frequency, quantum relaxation time, and phonon frequency for metals and semiconductors. As a typical example, based on the new approaches, we realized simultaneous extraction of carrier concentration n and electron-phonon relaxation time τe-p, and establish a new relationship of τe−p=C* · T−1 ·n−1/3 for n-type doped silicon, where the true electron-phonon coupling constant C∗ is proposed for the first time. This innovative methodology offers significant potential for high-throughput screening of materials, expediting the development of next-generation electronic devices.

Keywords

dielectric resonant spectroscopy / high throughput characterization method / phonon properties / transport properties

Cite this article

Download citation ▾
Ziru Wang, Mingyang Qin, Peng Zhang, Yiguo Xu, Shiting Que, Feng Yan, X.-D. Xiang. High throughput characterization method of electrical and phonon properties by dielectric resonant spectroscopy. Materials Genome Engineering Advances, 2025, 3(3): e70010 DOI:10.1002/mgea.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nielsen M. The Fourth paradigm: data-intensive scientific discovery. Nature. 2009; 462(7274): 722-723.

[2]

Raccuglia P, Elbert KC, Adler PDF, et al. Machine-learning-assisted materials discovery using failed experiments. Nature. 2016; 533(7601): 73-76.

[3]

Jain A, Hautier G, Ong SP, Persson K. New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J Mater Res. 2016; 31(8): 977-994.

[4]

Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. J Materiomics. 2017; 3(3): 159-177.

[5]

Wang H, Xiang X-D, Zhang L. Data+ AI is the core of materials genomic engineering. Sci Technol Rev. 2018; 36(14): 15-21.

[6]

Wang H, Xiang X-D. On the data-driven materials innovation infrastructure. Engineering. 2020; 6(6): 609-611.

[7]

Schaller RR. Moore's law: past, present and future. IEEE Spectrum. 1997; 34(6): 52-59.

[8]

Council NR. Astronomy and Astrophysics in the New Millennium: Panel Reports. National Academies Press; 2001: 400.

[9]

Mardis ER. A decade’s perspective on DNA sequencing technology. Nature. 2011; 470(7333): 198-203.

[10]

Metzker ML. Sequencing technologies — the next generation. Nat Rev Genet. 2010; 11(1): 31-46.

[11]

Stein LD. The case for cloud computing in genome informatics. Genome Biol. 2010; 11(5): 207.

[12]

The human genome at ten. Nature2010; 464(7289): 649-650.

[13]

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute; 2013.

[14]

Geerken BM, Griessen R, Huisman LM, Walker E. Contribution of optical phonons to the elastic moduli of PdHx and PdDx. Phys Rev B1982; 26(4): 1637-1650.

[15]

Bouarissa N, Saib S. Elastic modulus, optical phonon modes and polaron properties in Al1−xBxN alloys. Curr Appl Phys. 2013; 13(3): 493-499.

[16]

Drude P. On the electron theory of metals. Ann Phys. 1900; 1(3): 566-613.

[17]

Sommerfeld A, Bethe H. Elektronentheorie der Metalle. In: Aufbau Der Zusammenhängenden Materie. Springer Berlin Heidelberg; 1933: 333-622.

[18]

Dressel M, Grüner G. Electrodynamics of Solids: Optical Properties of Electrons in Matter. Cambridge University Press; 2002.

[19]

Zhang P, Tang H, Gu C, et al. A direct measurement method of quantum relaxation time. Natl Sci Rev. 2020; 8(4).

[20]

Yamaguchi S, Hanyu T. Optical properties of potassium. J Phys Soc Jpn. 1971; 31(5): 1431-1441.

[21]

Yamaguchi S, Hanyu T. The optical properties of Rb. J Phys Soc Jpn. 1973; 35(5): 1371-1377.

[22]

Rakić AD. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl Opt. 1995; 34(22): 4755-4767.

[23]

Haynes WM, ed. CRC Handbook of Chemistry and Physics. 97th ed. CRC Press; 2016.

[24]

Smith NV. Optical constants of rubidium and cesium from 0.5 to 4.0 eV. Phys Rev B. 1970; 2(8): 2840-2848.

[25]

Marković M, Rakić A. Determination of optical properties of aluminium including electron reradiation in the Lorentz-Drude model. Opt Laser Technol. 1990; 22(6): 394-398.

[26]

Tanner DB. Optical Effects in Solids. Cambridge University Press; 2019.

[27]

Kim J, Naik GV, Emani NK, Guler U, Boltasseva A. Plasmonic resonances in nanostructured transparent conducting oxide films. IEEE J Sel Top Quant Electron. 2013; 19(3):4601907.

[28]

Gervais F, Piriou B. Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. J Phys C Solid State Phys. 1974; 7(13): 2374-2386.

[29]

Gervais, Fo, Servoin, JL, Baratoff, A, Bednorz, JG, Binnig, G. Temperature dependence of plasmons in Nb-doped SrTiO3. Phys Rev B1993; 47(13): 8187-8194,

[30]

Rubano A, Braun L, Wolf M, Kampfrath T. Mid-infrared time-domain ellipsometry: application to Nb-doped SrTiO3. Appl Phys Lett. 2012; 101(8):081103.

[31]

Shi Z-W, Cao X, Wen Q, et al. Terahertz modulators based on silicon nanotip array. Adv Opt Mater. 2018; 6(2):1700620.

[32]

Ho L, Pepper M, Taday P. Signatures and fingerprints. Nat Photonics. 2008; 2(9): 541-543.

[33]

Jepsen PU, Cooke DG, Koch M. Terahertz spectroscopy and imaging – modern techniques and applications. Laser Photon Rev. 2011; 5(1): 124-166.

[34]

Grischkowsky D, Keiding S, van Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B. 1990; 7(10): 2006-2015.

[35]

Duvillaret L, Garet F, Coutaz JL. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J Sel Top Quant Electron. 1996; 2(3): 739-746.

[36]

Dorney TD, Baraniuk RG, Mittleman DM. Material parameter estimation with terahertz time-domain spectroscopy. J Opt Soc Am A. 2001; 18(7): 1562-1571.

[37]

Jeon T-I, Grischkowsky D. Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Appl Phys Lett. 1998; 72(23): 3032-3034.

[38]

Nashima S, Morikawa O, Takata K, Hangyo M. Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy. Appl Phys Lett. 2001; 79(24): 3923-3925.

[39]

Coffey KR. 9 – electron scattering in metallic thin films. In: K Barmak, K Coffey, eds. Metallic Films for Electronic, Optical and Magnetic Applications. Woodhead Publishing; 2014: 422-453.

[40]

Brooks H. Theory of the electrical properties of germanium and silicon. In: L Marton, ed. Advances in Electronics and Electron Physics. Academic Press; 1955: 85-182.

[41]

Herring C. Transport properties of a many-valley semiconductor. Bell Syst Tech J. 1955; 34(2): 237-290.

[42]

Peter Y, Cardona M. Fundamentals of Semiconductors: Physics and Materials Properties. Springer Science & Business Media; 2010.

[43]

Ma J, Nissimagoudar AS, Li W. First-principles study of electron and hole mobilities of Si and GaAs. Phys Rev B. 2018; 97(4):045201.

[44]

Liu T-H, Zhou J, Liao B, Singh DJ, Chen G. First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs. Phys Rev B. 2017; 95(7):075206.

[45]

Zhou J-J, Bernardi M. Ab initio electron mobility and polar phonon scattering in GaAs. Phys Rev B. 2016; 94(20):201201.

[46]

Migdal A. Interaction between electrons and lattice vibrations in a normal metal. Sov Phys JETP. 1958; 7(6): 996-1001.

[47]

Eliashberg G. Interactions between electrons and lattice vibrations in a superconductor. Sov Phys JETP. 1960; 11(3): 696-702.

[48]

Ioffe AF, Stil'bans LS, Iordanishvili EK, Stavitskaya TS, Gelbtuch A, Vineyard G. Semiconductor thermoelements and thermoelectric cooling. Phys Today. 1959; 12(5):42.

[49]

Horii H, Ueda A, Hayashi Y. Optimization of effective electron mass in strained silicon nanosheets. AIP Adv. 2024; 14(1).

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/