Accelerating the design of highly separable Fe-containing intermetallics in Al–Si alloys via DFT calculations and experimental validation

Xiaozu Zhang , Dongtao Wang , Hiromi Nagaumi , Rui Wang , Zibin Wu , Minghe Zhang , Dongsheng Gao , Hao Chen , Pengfei Wang , Pengfei Zhou , Yunxuan Zhou , Zhixiu Wang , Tailin Li

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e70008

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e70008 DOI: 10.1002/mgea.70008
RESEARCH ARTICLE

Accelerating the design of highly separable Fe-containing intermetallics in Al–Si alloys via DFT calculations and experimental validation

Author information +
History +
PDF

Abstract

The detrimental Fe element in Al-Si cast alloy can be effectively removed by Fe-containing intermetallics separation. However, the formation temperature of Fe-containing intermetallics can be further improved to increase the removal efficiency of Fe element. The effects of the Cr/Mn atomic ratio on the stability, theoretical melting point, elastic modulus, and thermal properties were calculated with the aim of improving the stability of the α-Al(FeMnCr)Si phase. An increased Cr/Mn atomic ratio effectively increased the stability, theoretical melting point, elastic modulus, isobaric heat capacity, and reduced the volumetric thermal expansion coefficient of α-Al(FeMnCr)Si phase, which can be explained by the strengthened Al-Cr and Si-Cr chemical bonds. The experimental study results revealed that the formation temperature and Young's modulus of the α-Al(FeMnCr)Si phase increase from 673.0°C and 228.5 GPa to 732.0°C and 272.1 GPa with the Cr/Mn atomic ratio increasing from 0.11 to 0.8, which better validates the thermodynamic stability, theoretical melting point and elastic modulus calculation results. These results provide a new strategy for designing Fe-containing intermetallics with the desired properties, which contributes to guiding the development of high-performance recycled Al-Si alloys.

Keywords

DFT calculations / experimental validation / Fe-containing intermetallics / stability / thermal properties

Cite this article

Download citation ▾
Xiaozu Zhang, Dongtao Wang, Hiromi Nagaumi, Rui Wang, Zibin Wu, Minghe Zhang, Dongsheng Gao, Hao Chen, Pengfei Wang, Pengfei Zhou, Yunxuan Zhou, Zhixiu Wang, Tailin Li. Accelerating the design of highly separable Fe-containing intermetallics in Al–Si alloys via DFT calculations and experimental validation. Materials Genome Engineering Advances, 2025, 3(2): e70008 DOI:10.1002/mgea.70008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Das SK, Green JAS. Aluminum industry and climate change – assessment and responses. JOM. 2010; 62(2): 27-31.

[2]

Yi JZ, Gao YX, Lee PD, Lindley TC. Effect of Fe-content on fatigue crack initiation and propagation in a cast-aluminum-silicon alloy (A356–T6). Mater Sci Eng, A. 2004; 286(1-2): 396-407.

[3]

Chen XJ, Wang B, Wang Z, et al. Unveiling micromechanism of Fe minor addition-induced property degradation of an Al-5.1Cu-0.65 Mg-0.8Mn (wt%) alloy. Rare Met. 2025.

[4]

Zhang LF, Gao JW, Damoah LNW, Robertson DG. Min. Removal of iron from aluminum: a review. Proc Ext Met Rev. 2012; 33(2): 99-157.

[5]

Xu ZM, Li TX, Zhou YH. Elimination of Fe in Al-Si cast alloy scrap by electromagnetic filtration. J Mater Sci. 2003; 38: 4557-4565.

[6]

Yang WC, Gao F, Ji SX. Formation and sedimentation of Fe-rich intermetallics in Al-Si-Cu-Fe alloy. Trans Nonferr Met Soc China. 2015; 25(5): 1704-1714.

[7]

Shabestari SG, Gruzleski JE. Gravity segregation of complex intermetallic compounds in liquid aluminum-silicon alloys. Metall Mater Trans A. 1995; 26(4): 999-1006.

[8]

Chen DF, Cao ZQ, Yang M, Zhang T. Hypereutectic Al-5%Fe in-situ surface layer composite produced by electromagnetic separation. J Funct Mater. 2007(4): 341-348.

[9]

Becker H, Thum A, Distl B, Kriegel MJ, Leineweber A. Effect of melt conditioning on removal of Fe from secondary Al-Si alloys containing Mg, Mn, and Cr. TMS ASM. 2018; 49(12): 6375-6389.

[10]

Cai YH, Liang RG, Hou LG, Zhang, J. Effect of Cr and Mn on the microstructure of spray-formed Al-25Si-5Fe-3Cu alloy[J]. Mater Sci Eng A2011; 528(12): 4248-4254,

[11]

Farkoosh AR, Grant Chen X, Pekguleryuz M. Dispersoid strengthening of a high temperature Al–Si–Cu–Mg alloy via Mo addition. Mater Sci Eng A. 2015; 620: 181-189.

[12]

Sun SB, Zheng LJ, Liu JH, Zhang H. Selective laser melting of an Al–Fe–V–Si alloy: microstructural evolution and thermal stability. J Mater Sci Technol. 2017; 33(4): 389-396.

[13]

Ferreira T, Vidilli AL, Zepon G, Kiminami CS, Botta WJ, Bolfarini C. Strong and ductile recycled Al-7Si-3Cu-1Fe alloy: controlling the morphology of quasicrystal approximant α-phase by Mn and V addition. J Alloys Compd. 2021; 888: 1-17.

[14]

Elsharkawi EA, Samuel E, Samuel AM, Samuel FH. Effects of Mg, Fe, Be additions and solution heat treatment on the π-AlMgFeSi iron intermetallic phase in Al–7Si–Mg alloys. J Mater Sci. 2010; 45(6): 1528-1539.

[15]

Song DF, Zhao YL, Jia YW, et al. Effect of B addition on the formation of Fe-rich phases in Al-Si-Fe alloys. J Alloys Compd. 2023; 930: 1-11.

[16]

Li YG, Yang Y, Wu YY, Wei ZS, Liu XF. Supportive strengthening role of Cr-rich phase on Al–Si multicomponent piston alloy at elevated temperature. Mater Sci Eng, A. 2011; 528(13-14): 4427-4430.

[17]

Fatih Kilicaslan M, Yilmaz F, Hong S, Uzun O. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al-20Si-5Fe alloys. Mater Sci Eng A. 2012; 556: 716-721.

[18]

Qu H, Liu WD, Zhou G, Shen XL, Liu C. Study on the precipitated behavior and stability of the strengthening phase Al12(Fe,X)3Si in Al-Fe-Si-X alloys with the EET theory. Adv Mater Res. 2010; 152–153(4): 743-747.

[19]

Basak CB, Meduri A, Hari Babu N. Influence of Ni in high Fe containing recyclable Al-Si cast alloys. Mater Des. 2019; 182: 1-13.

[20]

Schoß JP, Becker H, Keßler A, Leineweber A, Wolf G. Removal of iron from a secondary Al-Si die-casting alloy by metal melt filtration in a laboratory filtration apparatus. Adv Eng Mater. 2022; 24(2): 1-15.

[21]

Jorstad JL. Understanding sludge. Die Cast Eng. 1986; 30(6): 30-36.

[22]

Ferraro S, Fabrizi A, Timelli G. Evolution of sludge particles in secondary die-cast aluminum alloys as function of Fe, Mn and Cr contents. Mater Chem Phys. 2015; 153: 168-179.

[23]

Amirkhanyan L, Weissbach T, Gruber T, Zienert T, Fabrichnaya O, Kortus J. Thermodynamic investigation of the τ4-Al–Fe–Si intermetallic ternary phase: a density-functional theory study. J Alloys Compd. 2014; 598: 137-141.

[24]

Dinsdale A, Fang CM, Que Z, Fan Z. Understanding the thermodynamics and crystal structure of complex Fe containing intermetallic phases formed on solidification of aluminium alloys. JOM. 2019; 71(5): 1731-1736.

[25]

Fang CM, Que ZP, Fan Z. Crystal chemistry and electronic structure of the β-AlFeSi phase from first-principles. J Solid State Chem. 2021; 299: 1-8.

[26]

Guo Y, Wang Y, Chen HT, Xu H, Hu M, Ji Z. Anisotropic elasticity, electronic structure and thermodynamic properties of Al-Fe-Si intermetallic compounds from first principles calculations. Solid State Commun. 2019; 298: 1-7.

[27]

Zhang XZ, Wang DT, Zhou YX, et al. Exploring crystal structures, stability and mechanical properties of Fe, Mn-containing intermetallics in Al-Si Alloy by experiments and first-principles calculations. J Alloys Compd. 2021; 876: 1-12.

[28]

Zhang XZ, Wang DT, Nagaumi H, et al. Morphology, thermal stability, electron structure and mechanical properties of α-Al(FeMn)Si phases with varying Mn/Fe atomic ratios: experimental studies and DFT calculations. J Alloys Compd. 2022; 901: 1-11.

[29]

Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter. 2002; 14(11): 2717-2744.

[30]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B Condens Matter. 1990; 41(11): 7892-7895.

[31]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[32]

Parr RG, Yang W. Density Functional Theory of Atoms and Molecules. vol. 16. Oxford University Press; 1989.

[33]

Baroni S, Giannozzi P, Isaev E. Density-Functional perturbation theory for quasi-harmonic calculations. Rev Mineral Geochem. 2010; 71(1): 39-57.

[34]

Davies GF. Effective elastic moduli under hydrostatic stress-I.quasi-harmonic theory. J Phys Chem Solid. 1974; 35(11): 1513-1520.

[35]

Zhou YX, Lin Y, Zhang F, et al. Lattice stability, mechanical and thermal properties of a new class of multicomponent (Fe,Mo,W)6Cη carbides with different atomic site configurations. Ceram Int. 2022; 48(4): 5107-5118.

[36]

Wang GC, Chong XY, Li ZL, FengJiang JY, Jiang Y. Design of Fe2B-based ductile high temperature ceramics: first-principles calculations and experimental validation. Ceram Int. 2022; 48(18): 27163-27173.

[37]

Chong XY, Jiang YH, Zhou R, Feng J. Elastic properties and electronic structures of CrxBy as superhard compounds. J Alloys Compd. 2014; 610: 684-694.

[38]

Hill RW. The elastic behavior of a crystalline aggregate. Proc Phys Soc. 1952; 65(5): 349-354.

[39]

Zhang XZ, Wang DT, Li XZ, Zhang H, Nagaumi H. Understanding crystal structure and morphology evolution of Fe, Mn, Cr-containing phases in Al-Si cast alloy. Intermetallics. 2021; 131: 1-9.

[40]

Cooper M, Robinson K. The crystal structure of the ternary alloy α-(AlMnSi). Acta Crystallogr. 1966; 20(5): 614-617.

[41]

Connolly JWD, Williams AR. Density-functional theory applied to phase transformations in transition-metal alloys. Phys Rev B Condens Matter. 1983; 27(8): 5169-5172.

[42]

Walle AVD. Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. Calphad. 2009; 33(2): 266-278.

[43]

Fine ME, Brown LD, Marcus HL. Elastic constants versus melting temperature in metals. Scr Metall. 1984; 18(9): 951-956.

[44]

Wang XQ, Zhao Y, Liu HX, et al. Finite-temperature ductility-brittleness and electronic structures of AlnSc (n = 1, 2 and 3). Rare Met. 2024; 43(8): 3974-3989.

[45]

Xu JH, Freeman AJ. Phase-stability and electronic-structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrAl3 precipitates. Phys Rev B. 1990; 41(18): 12553-12561.

[46]

Yan P, Chong XY, Jiang YH, Feng J. Effects of alloying elements such as Ti, Zr and Hf on the mechanical and thermodynamic properties of Pd-Base superalloy. J Alloys Compd. 2017; 710: 589-599.

[47]

Luo X, Feng J, Liu YH, Hu MY, Chong XY, Jiang YH. Properties of Fe–Mn–Al alloys with different Mn contents using density functional theory. Rare Met. 2023; 42(4): 1387-1397.

[48]

Becker H, Leineweber A. Approximate icosahedral symmetry of α-Al(Fe,Mn,Cr)Si in electron backscatter diffraction analysis of a secondary Al-Si casting alloy. Mater Charact. 2018; 141: 406-411.

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/