High-throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi-principal element alloys

Chengchen Jin , Kai Xiong , Congtao Luo , Hui Fang , Chaoguang Pu , Hua Dai , Aimin Zhang , Shunmeng Zhang , Yingwu Wang

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (3) : e70004

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (3) : e70004 DOI: 10.1002/mgea.70004
RESEARCH ARTICLE

High-throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi-principal element alloys

Author information +
History +
PDF

Abstract

The traditional trial-and-error method for designing refractory multi-principal element alloys (RMPEAs) is inefficient due to a vast compositional design space and high experimental costs. To surmount this challenge, the data-driven material design based on machine learning (ML) has emerged as a critical tool for accelerating materials design. However, the absence of robust datasets impedes the exploitation of machine learning in designing novel RMPEAs. High-throughput (HTP) calculations have enabled the creation of such datasets. This study addresses these challenges by developing a data-driven framework for predicting the elastic properties of RMPEAs, integrating HTP calculations with ML. A big dataset of RMPEAs including 4536 compositions was constructed using the new proposed HTP method. A novel stacking ensemble regression algorithm combining multilayer perceptron (MLP) and gradient boosting decision tree (GBDT) was developed, which achieved 92.9% accuracy in predicting the elastic properties of Ti-V-Nb-Ta alloys. Verification experiments confirmed the ML model's accuracy and robustness. This integration of HTP calculations and ML provides a cost-effective, efficient, and precise alloy design strategy, advancing RMPEAs development.

Keywords

elastic properties / high-throughput calculations / machine learning / materials design / refractory multi-principal element alloys

Cite this article

Download citation ▾
Chengchen Jin, Kai Xiong, Congtao Luo, Hui Fang, Chaoguang Pu, Hua Dai, Aimin Zhang, Shunmeng Zhang, Yingwu Wang. High-throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi-principal element alloys. Materials Genome Engineering Advances, 2025, 3(3): e70004 DOI:10.1002/mgea.70004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Senkov ON, Miracle DB, Chaput KJ, Couzinie JP. Development and exploration of refractory high entropy alloys—a review. J Mater Res. 2018; 33(19): 3092-3128.

[2]

Senkov O, Wilks G, Miracle D, Chuang C, Liaw P. Refractory high-entropy alloys. Intermetallics. 2010; 18(9): 1758-1765.

[3]

Gao M, Carney C, Doğan Ö, Jablonksi P, Hawk J, Alman D. Design of refractory high-entropy alloys. JOM. 2015; 67(11): 2653-2669.

[4]

George E, Raabe D, Ritchie R. vol. 4, issue 8, High-entropy alloys. Nat Rev Mater. 2019; 4(8): 515-534.

[5]

Srikanth M, Annamalai AR, Muthuchamy A, Jen CP. A review of the latest developments in the field of refractory high-entropy alloys. Crystals. 2021; 11(6):612.

[6]

Jin C, Xiong K, Li W, et al. Effects of V on the microstructure and mechanical properties of HfNbTaTiVx refractory multi-principle element alloys: a combined experimental and computational study. Mater Sci. Eng, A. 2024; 898:146401.

[7]

Yang L, Xiong K, Jin C, et al. Effects of Ti content on the tensile ductility, lattice distortion and mechanical properties of VNbTaTix refractory high-entropy alloys. J Mater Res Technol. 2024; 30: 3886-3899.

[8]

Yang L, Xiong K, Dai H, et al. An ambient ductile VNbTa refractory medium-entropy alloy with super rolling formability. Mater Sci. Eng, A. 2024; 889:145841.

[9]

Sun Z, Xiong K, Jin C, et al. An experimental and computational design low-modulus (HfNbTa) 1-xTix multiprinciple elemental alloys with super formability for biomedical applications. Mater Sci Eng, A. 2023; 876:145137.

[10]

Shi Z, Yang W, Deng X,et al. Machine-learning-assisted high-throughput computational screening of high performance metal–organic frameworks. Mol Syst Des Eng. 2020; 5(4): 725-742.

[11]

Armiento R. Database-driven high-throughput calculations and machine learning models for materials design. Mach Learning Meets Quantum Phys. 2020: 377-395.

[12]

Huang EW, Lee WJ, Singh SS, et al. Machine-learning and high-throughput studies for high-entropy materials. Mater Sci Eng, R. 2022; 147:100645.

[13]

Xu D, Zhang Q, Huo X, Wang Y, Yang M. Advances in data-assisted high-throughput computations for material design. MGE Adv. 2023; 1(1):e11.

[14]

Geng X, Wang F, Wu HH, et al. Data-driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology. MGE Adv. 2023; 1(1):e10.

[15]

Olivetti EA, Cole JM, Kim E, et al. Data-driven materials research enabled by natural language processing and information extraction. Appl Phys Rev. 2020; 7(4).

[16]

Curtarolo S, Morgan D, Ceder G. Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys. Calphad. 2005; 29(3): 163-211.

[17]

Feng R, Zhang C, Gao MC, et al. High-throughput design of high-performance lightweight high-entropy alloys. Nat Commun. 2021; 12(1):4329.

[18]

Li R, Xie L, Wang WY, Liaw PK, Zhang Y. High-throughput calculations for high-entropy alloys: a brief review. Front Mater. 2020; 7:290.

[19]

Kelechi AH, Alsharif MH, Bameyi OJ, et al. Artificial intelligence: an energy efficiency tool for enhanced high performance computing. Symmetry. 2020; 12(6):1029.

[20]

Liu X, Zhang J, Pei Z. Machine learning for high-entropy alloys: progress, challenges and opportunities. Prog Mater Sci. 2023; 131:101018.

[21]

Hart GL, Mueller T, Toher C, Curtarolo S. Machine learning for alloys. Nat Rev Mater. 2021; 6(8): 730-755.

[22]

Dewangan SK, Nagarjuna C, Jain R, et al. Review on applications of artificial neural networks to develop high entropy alloys: a state-of-the-art technique. Mater Today Commun. 2023; 37:107298.

[23]

Bansal A, Kumar P, Yadav S, Hariharan V, Rahul M, Phanikumar G. Accelerated design of high entropy alloys by integrating high throughput calculation and machine learning. J Alloys Compd. 2023; 960:170543.

[24]

Guo X, Wang Z, Yang JH, Gong XG. Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries. J Mater Chem A. 2024; 12(17): 10124-10136.

[25]

Zhichao L, Dong M, Xiongjun L, Lu Z. High-throughput and data-driven machine learning techniques for discovering high-entropy alloys. Commun Mater. 2024; 5(1): 76.

[26]

Su Y, Wang J. Machine learning aided High-throughput first-principles calculations to predict the formation enthalpy of σ phase. Calphad. 2023; 82:102599.

[27]

Gan Y, Wang G, Zhou J, Sun Z. Prediction of thermoelectric performance for layered IV-V-VI semiconductors by high-throughput ab initio calculations and machine learning. NPJ Comput Mater. 2021; 7(1): 176.

[28]

Yuan J, Li Z, Yang Y, et al. Applications of machine learning method in high-performance materials design: a review. J Mater Inf. 2024; 4(3).

[29]

Song Z, Chen X, Meng F, et al. Machine learning in materials design: algorithm and application. Chin Phys B. 2020; 29(11):116103.

[30]

Liu S, Yang C. Machine learning design for high-entropy alloys: models and algorithms. Metals. 2024; 14(2):235.

[31]

Vitos L. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications. Springer Science and Business Media; 2007.

[32]

Skriver HL. The LMTO Method, Vol. 41 of Springer Series in Solid State Sciences. Springer; 1984.

[33]

Feng R, Feng B, Gao MC, et al. Superior high-temperature strength in a supersaturated refractory high-entropy alloy. Adv Mater. 2021; 33(48):2102401.

[34]

Lee C, Kim G, Chou Y, et al. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy. Sci Adv. 2020; 6(37):eaaz4748.

[35]

Frank M, Chen Y, Nene S, et al. Investigating the deformation mechanisms of a highly metastable high entropy alloy using in-situ neutron diffraction. Mater Today Commun. 2020; 23:100858.

[36]

Kim G, Diao H, Lee C, et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Mater. 2019; 181: 124-138.

[37]

Feng R, Kim G, Yu D, et al. Elastic behavior of binary and ternary refractory multi-principal-element alloys. Mater Des. 2022; 219:110820.

[38]

Mao H, Chen HL, Chen Q. TCHEA1: a thermodynamic database not limited for “high entropy” alloys. J Phase Equilibria Diffus. 2017; 38(4): 353-368.

[39]

Voigt W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann Phys. 1889; 274(12): 573-587.

[40]

Reuß A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-J Appl Math Mechanics/Zeitschrift für Angewandte Math und Mech. 1929; 9(1): 49-58.

[41]

Physics Io, Society tP, Society P. Proceedings of the Physical Society. Institute of Physics and the Physical Society; 1903.

[42]

Scheil E. Bemerkungen zur schichtkristallbildung. Int J Mater Res. 1942; 34(3): 70-72.

RIGHTS & PERMISSIONS

2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/