High-throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi-principal element alloys
Chengchen Jin , Kai Xiong , Congtao Luo , Hui Fang , Chaoguang Pu , Hua Dai , Aimin Zhang , Shunmeng Zhang , Yingwu Wang
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (3) : e70004
High-throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi-principal element alloys
The traditional trial-and-error method for designing refractory multi-principal element alloys (RMPEAs) is inefficient due to a vast compositional design space and high experimental costs. To surmount this challenge, the data-driven material design based on machine learning (ML) has emerged as a critical tool for accelerating materials design. However, the absence of robust datasets impedes the exploitation of machine learning in designing novel RMPEAs. High-throughput (HTP) calculations have enabled the creation of such datasets. This study addresses these challenges by developing a data-driven framework for predicting the elastic properties of RMPEAs, integrating HTP calculations with ML. A big dataset of RMPEAs including 4536 compositions was constructed using the new proposed HTP method. A novel stacking ensemble regression algorithm combining multilayer perceptron (MLP) and gradient boosting decision tree (GBDT) was developed, which achieved 92.9% accuracy in predicting the elastic properties of Ti-V-Nb-Ta alloys. Verification experiments confirmed the ML model's accuracy and robustness. This integration of HTP calculations and ML provides a cost-effective, efficient, and precise alloy design strategy, advancing RMPEAs development.
elastic properties / high-throughput calculations / machine learning / materials design / refractory multi-principal element alloys
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
2025 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.
/
| 〈 |
|
〉 |