High-throughput calculation of large spin Hall conductivity in heavy-metal-based antiperovskite compounds

Xiong Xu , J. X. Lv , Y. Wang , Min Li , Zhe Wang , Hui Wang

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e69

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (2) : e69 DOI: 10.1002/mgea.69
RESEARCH ARTICLE

High-throughput calculation of large spin Hall conductivity in heavy-metal-based antiperovskite compounds

Author information +
History +
PDF

Abstract

Spin Hall effect (SHE) provides a promising solution to the realization of advantageous functionalities for spin-based recording and information processing. In this work, we conduct high-throughput calculations on the spin Hall conductivity (SHC) of antiperovskite compounds with the composition ZXM3, where Z is a nonmetal, X is a metal, and M is a platinum group metal. From an initial database over 4500 structures, we screen 295 structurally stable compounds and identify 24 compounds with intrinsic SHC exceeding 500 (ℏ/e) (Ω⁻1 cm⁻1). We reveal a strong dependence of SHC on spin-orbit coupling-induced energy splitting near the Fermi level. In addition, SHCs can be regulated through proper doping of electrons or holes. The present work establishes high-throughput database of SHC in antiperovskites which is crucial for designing future electric and spintronic devices.

Keywords

AB initio simulation / bulk material / computational materials science / high-throughput computing / materials database

Cite this article

Download citation ▾
Xiong Xu, J. X. Lv, Y. Wang, Min Li, Zhe Wang, Hui Wang. High-throughput calculation of large spin Hall conductivity in heavy-metal-based antiperovskite compounds. Materials Genome Engineering Advances, 2025, 3(2): e69 DOI:10.1002/mgea.69

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wunderlich J, Kaestner B, Sinova J, Jungwirth T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett. 2005; 94(4):047204.

[2]

Guo GY, Murakami S, Chen T-W, Nagaosa N. Intrinsic spin Hall effect in platinum: first-principles calculations. Phys Rev Lett. 2008; 100(9):096401.

[3]

Kato YK, Myers RC, Gossard AC, Awschalom DD. Observation of the spin Hall effect in semiconductors. Science. 2004; 306(5703): 1910–1913.

[4]

Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev Mod Phys. 2015; 87(4): 1213–1260.

[5]

Wolf SA, Chtchelkanova AY, Treger DM. Spintronics—a retrospective and perspective. IBM J Res Dev. 2006; 50(1): 101–110.

[6]

Mishra R, Mahfouzi F, Kumar D, et al. Electric-field control of spin accumulation direction for spin-orbit torques. Nat Commun. 2019; 10(1):248.

[7]

Niimi Y, Kawanishi Y, Wei DH, et al. Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Phys Rev Lett. 2012; 109(15):156602.

[8]

Sun D, van Schooten KJ, Kavand M, et al. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin–orbit coupling. Nat Mater. 2016; 15(8): 863–869.

[9]

Castel V, Vlietstra N, Ben Youssef J, van Wees BJ. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl Phys Lett. 2012; 101(13):132414.

[10]

Xu Z, Gu B, Mori M, Ziman T, Maekawa S. Sign change of the spin Hall effect due to electron correlation in nonmagnetic CuIr alloys. Phys Rev Lett. 2015; 114(1):017202.

[11]

Fert A, Levy PM. Spin Hall effect induced by resonant scattering on impurities in metals. Phys Rev Lett. 2011; 106(15):157208.

[12]

Nguyen M-H, Ralph DC, Buhrman RA. Spin torque study of the spin Hall conductivity and spin diffusion length in platinum thin films with varying resistivity. Phys Rev Lett. 2016; 116(12):126601.

[13]

Qiu X, Narayanapillai K, Wu Y, et al. Spin–orbit-torque engineering via oxygen manipulation. Nat Nanotechnol. 2015; 10(4): 333–338.

[14]

Gu B, Sugai I, Ziman T, et al. Surface-assisted spin Hall effect in Au films with Pt impurities. Phys Rev Lett. 2010; 105(21):216401.

[15]

Dushenko S, Hokazono M, Nakamura K, Ando Y, Shinjo T, Shiraishi M. Tunable inverse spin Hall effect in nanometer-thick platinum films by ionic gating. Nat Commun. 2018; 9(1):3118.

[16]

Obstbaum M, Decker M, Greitner A, et al. Tuning spin Hall angles by alloying. Phys Rev Lett. 2016; 117(16):167204.

[17]

Sagasta E, Omori Y, Isasa M, et al. Tuning the spin Hall effect of Pt from the moderately dirty to the superclean regime. Phys Rev B. 2016; 94(6):060412.

[18]

Fiedler L, Modine NA, Schmerler S, et al. Predicting electronic structures at any length scale with machine learning. Npj Comput Mater. 2023; 9(1):115.

[19]

Nandi P, Sharma S, De Sarkar A. Intrinsic spin Hall and Rashba effects in metal nitride bromide monolayer for spin-orbitronics. J Appl Phys. 2024; 135(23):234302.

[20]

Geng X, Wang F, Wu H-H, et al. Data-driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology. Mater Genome Eng Adv. 2023; 1:e10.

[21]

Xie W, Wang W, Liu Y. On the application of high-throughput experimentation and data-driven approaches in metallic glasses. Mater Genome Eng Adv. 2023; 1:e8.

[22]

Xu D, Zhang Q, Huo X, Wang Y, Yang M. Advances in data-assisted high-throughput computations for material design. Mater Genome Eng Adv. 2023; 1:e11.

[23]

Xie J. Prospects of materials genome engineering frontiers. Mater Genome Eng Adv. 2023; 1(2):e17.

[24]

Gu L, Liu Y, Chen P, et al. Bond sensitive graph neural networks for predicting high temperature superconductors. Mater Genome Eng Adv. 2024; 2:e48.

[25]

Hoffmann N, Cerqueira TFT, Schmidt J, Marques MAL. Superconductivity in antiperovskites. Npj Comput Mater. 2022; 8(1):150.

[26]

Singh HK, Zhang Z, Opahle I, Ohmer D, Yao Y, Zhang H. High-throughput screening of magnetic antiperovskites. Chem Mater. 2018; 30(20): 6983–6991.

[27]

Weiler M, Shaw JM, Nembach HT, Silva TJ. Phase-sensitive detection of spin pumping via the ac inverse spin Hall effect. Phys Rev Lett. 2014; 113(15):157204.

[28]

Liu L, Moriyama T, Ralph DC, Buhrman RA. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys Rev Lett. 2011; 106(3):036601.

[29]

Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S. Room-temperature reversible spin Hall effect. Phys Rev Lett. 2007; 98(15):156601.

[30]

Nakayama H, Althammer M, Chen YT, et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys Rev Lett. 2013; 110(20):206601.

[31]

Pai C-F, Mann M, Tan AJ, Beach GSD. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Phys Rev B. 2016; 93(14):144409.

[32]

Abdelwahab I, Kumar D, Bian T, et al. Two-dimensional chiral perovskites with large spin Hall angle and collinear spin Hall conductivity. Science. 2024; 385(6706): 311–317.

[33]

Meinert M, Gliniors B, Gueckstock O, et al. High-throughput techniques for measuring the spin Hall effect. Phys Rev Appl. 2020; 14(6):064011.

[34]

Yao Y, Fang Z. Sign changes of intrinsic spin Hall effect in semiconductors and simple metals: first-principles calculations. Phys Rev Lett. 2005; 95(15):156601.

[35]

Guo GY. Ab initio calculation of intrinsic spin Hall conductivity of Pd and Au. J Appl Phys. 2009; 105(7):07C701.

[36]

Xu X, Zhang L, Zou L, Li M, Wang H. Regulating interfacial spin Hall conductivity with ferroelectricity. J Phys Chem Lett. 2022; 13(15): 3310–3316.

[37]

Sharma S, De Sarkar A. Conflux of spin Nernst and spin Hall effect in ZnCu2 SnSe4 topological insulator. J Phys Condens Matter. 2024; 36(44):445501.

[38]

Farzaneh SM, Rakheja S. Intrinsic spin Hall effect in topological insulators: a first-principles study. Phys Rev Mater. 2020; 4(11):114202.

[39]

Yen Y, Guo G-Y. Tunable large spin Hall and spin Nernst effects in the Dirac semimetals Zr X Y(X = Si, Ge; Y = S, Se, Te). Phys Rev B. 2020; 101(6):064430.

[40]

Kondou K, Yoshimi R, Tsukazaki A, et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat Phys. 2016; 12(11): 1027–1031.

[41]

Wiendlocha B, Tobola J, Kaprzyk S, Fruchart D. Electronic structure, superconductivity and magnetism study of Cr3GaN and Cr3RhN. J Alloys Compd. 2007; 442(1–2): 289–291.

[42]

Oudah M, Ikeda A, Hausmann JN, et al. Superconductivity in the antiperovskite Dirac-metal oxide Sr3-xSnO. Nat Commun. 2016; 7(1):13617.

[43]

He T, Huang Q, Ramirez AP, et al. Superconductivity in the non-oxide perovskite MgCNi3. Nature. 2001; 411(6833): 54–56.

[44]

Isobe H, Fu L. Quantum critical points of j=3/2 Dirac electrons in antiperovskite topological crystalline insulators. Phys Rev B. 2016; 93(24):241113.

[45]

Hsieh TH, Liu J, Fu L. Topological crystalline insulators and Dirac octets in antiperovskites. Phys Rev B. 2014; 90(8):081112.

[46]

Yu R, Weng H, Fang Z, Dai X, Hu X. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys Rev Lett. 2015; 115(3):036807.

[47]

Shi K, Sun Y, Yan J, et al. Baromagnetic effect in antiperovskite Mn3 Ga0.95 N0.94 by neutron powder diffraction analysis. Adv Mater. 2016; 28(19): 3761–3767.

[48]

Matsunami D, Fujita A, Takenaka K, Kano M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat Mater. 2015; 14(1): 73–78.

[49]

Lin S, Tong P, Wang B, Lin J, Huang Y, Sun Y. Good thermoelectric performance in strongly correlated system SnCCo3 with antiperovskite structure. Inorg Chem. 2014; 53(7): 3709–3715.

[50]

Bilal M, Ahmad I, Asadabadi SJ, Ahmad R, Maqbool M. Thermoelectric properties of metallic antiperovskites AXD3 (A=Ge, Sn, Pb, Al, Zn, Ga; X=N, C; D=Ca, Fe, Co). Electron Mater Lett. 2015; 11(3): 466–480.

[51]

Lin JC, Tong P, Zhou XJ, et al. Giant negative thermal expansion covering room temperature in nanocrystalline GaN x Mn3. Appl Phys Lett. 2015; 107(13):131902.

[52]

Huang R, Li L, Cai F, Xu X, Qian L. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si. Appl Phys Lett. 2008; 93(8):081902.

[53]

Takayama T, Kuwano K, Hirai D, Katsura Y, Yamamoto A, Takagi H. Strong coupling superconductivity at 8.4 K in an antiperovskite phosphide SrPt3P. Phys Rev Lett. 2012; 108(23):237001.

[54]

Mondal S, Mazumdar C, Ranganathan R. Transverse vibration driven large uniaxial negative and zero thermal expansion in boron bridged REPt3B framework materials. Phys Chem Chem Phys. 2018; 20(21): 14876–14883.

[55]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54: 11169–11186.

[56]

Yao M, Pan J, Xie W, Yang Z, Li M, Wang H. Control of the magnetic anisotropy and Curie temperature of monolayer 1T-CrTe2 for room temperature application. Appl Phys Lett. 2023; 123(24):242405.

[57]

Xie W, Xu X, Li F, et al. Large magnetocaloric refrigeration performance near room temperature in monolayer transition metal dihalides. Appl Phys Lett. 2024; 125(3):033903.

[58]

Yang Z, Yao M, Pan J, Huang L, Li M, Wang H. Large magnetostriction of heavy-metal-element doped Fe-based alloys. J Appl Phys. 2022; 132(21):215105.

[59]

Zhang L, Pan J, Li M, Filot IAW, Hensen EJM, Wang H. Effect of reaction atmosphere on catalytic CO oxidation over Cu-based bimetallic nanoclusters on a CeO2 support. Phys Rev Appl. 2023; 20(3):034051.

[60]

Yuan J, Li M, Wang H. Intrinsically ultralow lattice thermal conductivity and giant thermoelectric effect in Ag-based intercalated layered crystalline solids. Phys Rev B. 2024; 109(23):235202.

[61]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865–3868.

[62]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50(24): 17953–17979.

[63]

Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013; 1:011002.

[64]

Togo A, Chaput L, Tadano T, Tanaka I. Implementation strategies in phonopy and phono3py. J Phys Condens Matter. 2023; 35:353001.

[65]

Togo A. First-principles phonon calculations with phonopy and Phono3py. J Phys Soc Jpn. 2023; 92(1):012001.

[66]

Xu X, Li F, Niu C, Li M, Wang H. Machine learning assisted investigation of the barocaloric performance in ammonium iodide. Appl Phys Lett. 2023; 122(4):043901.

[67]

Xie W, Xu X, Li M, Wang H. Intrinsic Rashba effect and anomalous valley Hall effect in one-dimensional magnetic nanoribbon. J Magn Magn Mater. 2023; 573:170662.

[68]

Xie W, Zhang L, Yue Y, Li M, Wang H. Giant valley polarization and perpendicular magnetocrystalline anisotropy energy in monolayer MX2(M=Ru,Os;X=Cl,Br). Phys Rev B. 2024; 109(2):024406.

[69]

Xu X, Xie W, Li F, Niu C, Li M, Wang H. General approach for efficient prediction of refrigeration performance in caloric materials. Phys Rev Appl. 2024; 22(1):014036.

[70]

Mouhat F, Coudert F-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B. 2014; 90(22):224104.

RIGHTS & PERMISSIONS

2024 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/