Atomic characteristics of heterogeneous nucleation during solidification of aluminum alloys: A critical review

Wenshuo Hao , Sida Ma , Zihui Dong , Yaowen Hu , Lijun Wang , Hao Chen , Qingyan Xu , Hongbiao Dong

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e65

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e65 DOI: 10.1002/mgea.65
REVIEW

Atomic characteristics of heterogeneous nucleation during solidification of aluminum alloys: A critical review

Author information +
History +
PDF

Abstract

Solidification is a critical process in the manufacturing of metals and alloys, with nucleation being the initial stage that determines the resulting microstructure and mechanical properties. Among various nucleation methods, heterogeneous nucleation is particularly effective in controlling the solidified structure and properties. However, the underlying mechanisms and atomic characteristics of heterogeneous nucleation remain a topic of debate. This paper reviews recent advancements and the current state of research on heterogeneous nucleation during the solidification of aluminum alloys. It focuses on three key areas: the methods and mechanisms for influencing heterogeneous nucleation, existing theories on the subject, and recent experimental and modeling studies on the effect of atomic-scale interactions at the solid/liquid interface on nucleation. The paper also addresses the ongoing challenges and future directions, highlighting the importance of atomic-scale experimental characterization, the validity and reliability of atomic-scale simulations, the role of the pre-nucleation layer at the solid/liquid interface, and the impact of solute elements on the formation of the pre-nucleation layer.

Keywords

atomic scale modeling / heterogeneous nucleation / materials genome / solid/liquid interface

Cite this article

Download citation ▾
Wenshuo Hao, Sida Ma, Zihui Dong, Yaowen Hu, Lijun Wang, Hao Chen, Qingyan Xu, Hongbiao Dong. Atomic characteristics of heterogeneous nucleation during solidification of aluminum alloys: A critical review. Materials Genome Engineering Advances, 2025, 3(1): e65 DOI:10.1002/mgea.65

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou YH, Hu ZQ, Jie WQ. Solidification Processing. China Machine Press; 1998.

[2]

Greer AL. Overview: application of heterogeneous nucleation in grain-refining of metals. J Chem Phys. 2016; 145(21):211704.

[3]

Kelton KF, Greer AL. Nucleation in Condensed Matter: Applications in Materials and Biology. Pergamon; 2010.

[4]

Hu HQ. Fundamental of Metallic Solidification. 2nd ed. China Machine Press; 2000.

[5]

Volmer M, Weber AZ. Nucleus formation in supersaturated systems. Z Phys Chem. 1926; 119: 277-301.

[6]

Fletcher NH. Size effect in heterogeneous nucleation. J Chem Phys. 1958; 29(3): 572-576.

[7]

Turnbull D. Kinetics of heterogeneous nucleation. J Chem Phys. 1950; 18(2): 198-203.

[8]

Zheng HY, Wang M, Wang XX, Huang WD. Analysis of heterogeneous nucleation on rough surfaces based on Wenzel model. Acta Phys Sin. 2011; 60(6):066402.

[9]

Kim WT, Cantor B. An adsorption model of the heterogeneous nucleation of solidification. Acta Metall Mater. 1994; 42(9): 3115-3127.

[10]

Greenwood GW, Greer AL, Herlach DM, Kelton KF, Cantor B. Heterogeneous nucleation and adsorption. Philos Trans R Soc Lond Ser A Math Phys Eng Sci. 2003; 361(1804): 409-417.

[11]

Greer AL, Bunn AM, Tronche A, Evans PV, Bristow DJ. Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B. Acta Mater. 2000; 48(11): 2823-2835.

[12]

Qian M. Heterogeneous nucleation on potent spherical substrates during solidification. Acta Mater. 2007; 55(3): 943-953.

[13]

Fan Z. An epitaxial model for heterogeneous nucleation on potent substrates. Metall Mater Trans A. 2013; 44(3): 1409-1418.

[14]

O'Masta MR, Clough EC, Martin JH. Island formation and the heterogeneous nucleation of aluminum. Comput Mater Sci. 2021; 192:110317.

[15]

Oh SH, Kauffmann Y, Scheu C, Kaplan WD, Rühle M. Ordered liquid aluminum at the interface with sapphire. Science. 2005; 310(5748): 661-663.

[16]

Kauffmann Y, Oh SH, Koch CT, et al. Quantitative analysis of layering and in-plane structural ordering at an alumina-aluminum solid-liquid interface. Acta Mater. 2011; 59(11): 4378-4386.

[17]

Meltzman H, Mordehai D, Kaplan WD. Solid-solid interface reconstruction at equilibrated Ni-Al2O3 interfaces. Acta Mater. 2012; 60(11): 4359-4369.

[18]

Gandman M, Kauffmann Y, Koch CT, Kaplan WD. Direct quantification of ordering at a solid-liquid interface using aberration corrected transmission electron microscopy. Phys Rev Lett. 2013; 110(8):086106.

[19]

Gandman M, Kauffmann Y, Kaplan WD. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy. Appl Phys Lett. 2015; 106(5):051603.

[20]

Zhang HL, Han YF, Dai YB, Wang J, Sun BD. An ab initio molecular dynamics study: liquid-Al/solid-TiB2 interfacial structure during heterogeneous nucleation. J Phys Appl Phys. 2012; 45:455307.

[21]

Zhang HL, Han YF, Dai YB, et al. An ab initio study on the electronic structures of the solid/liquid interface between TiB2 (0001) surface and Al melts. J Alloys Compd. 2014; 615: 863-867.

[22]

Zhang HL, Han YF, Zhou W, Dai YB, Wang J, Sun BD. Atomic study on the ordered structure in Al melts induced by liquid/substrate interface with Ti solute. Appl Phys Lett. 2015; 106(4):041606.

[23]

Sun J. Heterogeneous nucleation mechanism of aluminum on substrates. Ph.D., Shanghai University. 2018.

[24]

Huang C, Shuai S, Wang P, Liu X, Wang J, Ren Z. The effect of static magnetic field on solid-liquid interfacial free energy of Al-Cu alloy system. Scripta Mater. 2020; 187: 232-236.

[25]

Easton MA, Qian M, Prasad A, StJohn DH. Recent advances in grain refinement of light metals and alloys. Curr Opin Solid State Mater Sci. 2016; 20(1): 13-24.

[26]

Guan R-G, Tie D. A review on grain refinement of aluminum alloys: progresses, challenges and prospects. Acta Metall Sin. 2017; 30(5): 409-432.

[27]

Easton MA, StJohn DH. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles. Acta Mater. 2001; 49(10): 1867-1878.

[28]

StJohn DH, Prasad A, Easton MA, Qian M. The contribution of constitutional supercooling to nucleation and grain formation. Metall Mater Trans A. 2015; 46(11): 4868-4885.

[29]

Du Q, Li Y. An extension of the Kampmann-Wagner numerical model towards as-cast grain size prediction of multicomponent aluminum alloys. Acta Mater. 2014; 71: 380-389.

[30]

Qi XB, Chen Y, Kang XH, Li DZ, Du Q. An analytical approach for predicting as-cast grain size of inoculated aluminum alloys. Acta Mater. 2015; 99: 337-346.

[31]

Xu Y, Casari D, Mathiesen RH, Li Y. Revealing the heterogeneous nucleation behavior of equiaxed grains of inoculated Al alloys during directional solidification. Acta Mater. 2018; 149: 312-325.

[32]

Zhang M-X, Kelly PM, Easton MA, Taylor JA. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater. 2005; 53(5): 1427-1438.

[33]

Schülli TU, Daudin R, Renaud G, Vaysset A, Geaymond O, Pasturel A. Substrate-enhanced supercooling in AuSi eutectic droplets. Nature. 2010; 464(7292): 1174-1177.

[34]

Fan Z, Gao F, Jiang B, Que Z. Impeding nucleation for more significant grain refinement. Sci Rep. 2020; 10(1):9448.

[35]

Zhang HL Liquid-solid interface between Al melts and substrate during heterogeneous nucleation on atomic scale. Ph.D., Shanghai Jiao Tong University. 2015.

[36]

Murty BS, Kori SA, Chakraborty M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int Mater Rev. 2002; 47(1): 3-29.

[37]

Sumalatha C, Chandra Sekhar Rao PV, Rao VVS, Deepak MSK. Effect of grain refiner, modifier and graphene on the mechanical properties of hyper eutectic Al-Si alloys by experimental and numerical investigation. Mater Today Proc. 2022; 62: 3891-3900.

[38]

Li Y, Jiang Y, Hu B, Li Q. Novel Al-Ti-Nb-B grain refiners with superior efficiency for Al-Si alloys. Scripta Mater. 2020; 187: 262-267.

[39]

Li Y, Jiang Y, Liu B, Luo Q, Hu B, Li Q. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system. J Mater Sci Technol. 2021; 65: 190-201.

[40]

Xu J, Li Y, Ma K, et al. In-situ observation of grain refinement dynamics of hypoeutectic Al-Si alloy inoculated by Al-Ti-Nb-B alloy. Scripta Mater. 2020; 187: 142-147.

[41]

Zhang YH, Ye CY, Shen YP, et al. Grain refinement of hypoeutectic Al-7wt.%Si alloy induced by an Al-V-B master alloy. J Alloys Compd. 2020; 812:152022.

[42]

Birol Y. Grain refinement of pure aluminium and Al-7Si with Al-3B master alloy. Mater Sci Technol. 2012; 28(3): 363-367.

[43]

Chen Z, Kang H, Fan G, et al. Grain refinement of hypoeutectic Al-Si alloys with B. Acta Mater. 2016; 120: 168-178.

[44]

Wang F, Liu Z, Qiu D, Taylor JA, Easton MA, Zhang M-X. Revisiting the role of peritectics in grain refinement of Al alloys. Acta Mater. 2013; 61(1): 360-370.

[45]

Wang F, Qiu D, Liu Z-L, Taylor JA, Easton MA, Zhang M-X. The grain refinement mechanism of cast aluminium by zirconium. Acta Mater. 2013; 61(15): 5636-5645.

[46]

Li Y, Hu B, Gu Q, Liu B, Li Q. Achievement in grain-refining hypoeutectic Al-Si alloys with Nb. Scripta Mater. 2019; 160: 75-80.

[47]

Tronche A, Vandyoussefi M, Greer AL. Instability of TiC particles in aluminium melts inoculated with an Al-Ti-C grain refiner. Mater Sci Technol. 2002; 18(10): 1072-1078.

[48]

Chen ZQ, Jia JY, Hu WX, Wang W, Liu F. Research progress of rare earth combined refiner for aluminum alloys. Mater Rep. 2020; 34: 1365-1370.

[49]

Ding H-M, Liu X-F. Influence of Si on stability of TiC in Al melts. Trans Nonferrous Metals Soc China. 2011; 21(7): 1465-1472.

[50]

Xia F, Liang MX, Gao XS, et al. Instability of in situ TiC particles in an Al-12Si alloy. J Mater Res Technol. 2020; 9(5): 11361-11369.

[51]

Li HT, Wang Y, Fan Z. Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al-Mg alloys. Acta Mater. 2012; 60(4): 1528-1537.

[52]

Sri Harini R, Nampoothiri J, Nagasivamuni B, Raj B, Ravi KR. Ultrasonic assisted grain refinement of Al-Mg alloy using in-situ MgAl2O4 particles. Mater Lett. 2015; 145: 328-331.

[53]

Schumacher P, Greer AL, Worth J, et al. New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice. Mater Sci Technol. 1998; 14(5): 394-404.

[54]

Mohanty PS, Gruzleski JE. Mechanism of grain refinement in aluminium. Acta Metall Mater. 1995; 43(5): 2001-2012.

[55]

Fan Z, Wang Y, Zhang Y, et al. Grain refining mechanism in the Al/Al-Ti-B system. Acta Mater. 2015; 84: 292-304.

[56]

Jones GP, Pearson J. Factors affecting the grain refinement of aluminum using titanium and boron additives. Metall Trans B. 1976; 7(2): 223-234.

[57]

Li Y, Hu B, Liu B, et al. Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system. Acta Mater. 2020; 187: 51-65.

[58]

Li J, Hage FS, Ramasse QM, Schumacher P. The nucleation sequence of α-Al on TiB2 particles in Al-Cu alloys. Acta Mater. 2021; 206:116652.

[59]

Wang Y, Fang CM, Zhou L, et al. Mechanism for Zr poisoning of Al-Ti-B based grain refiners. Acta Mater. 2019; 164: 428-439.

[60]

Nowak M, Bolzoni L, Hari Babu N. Grain refinement of Al-Si alloys by Nb-B inoculation. Part I: concept development and effect on binary alloys. Mater Des. 2015; 66: 366-375.

[61]

Qiu D, Taylor JA, Zhang M-X, Kelly PM. A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys. Acta Mater. 2007; 55: 1447-1456.

[62]

Schumacher P, McKay BJ. TEM investigation of heterogeneous nucleation mechanisms in Al-Si alloys. J Non-Cryst Solids. 2003; 317: 123-128.

[63]

Wang Y, Que Z, Hashimoto T, Zhou X, Fan Z. Mechanism for Si poisoning of Al-Ti-B grain refiners in Al alloys. Metall Mater Trans A. 2020.

[64]

Bunn AM, Schumacher P, Kearns MA, Boothroyd CB, Greer AL. Grain refinement by Al-Ti-B alloys in aluminium melts: a study of the mechanisms of poisoning by zirconium. Mater Sci Technol. 1999; 15(10): 1115-1123.

[65]

Huang J, Feng L, Li C, Huang C, Li J, Friedrich B. Mechanism of Sc poisoning of Al-5Ti-1B grain refiner. Scripta Mater. 2020; 180: 88-92.

[66]

Ma T, Chen Z, Nie Z, Huang H. Microstructure of Al-Ti-B-Er refiner and its grain refining performance. J Rare Earths. 2013; 31(6): 622-627.

[67]

Li J, Amhad S, Schumacher P. Grain refinement of Al4CuTi based alloy with Zr, Sc, Er and TiB2. Minerals Metals Mater Ser. 2019; 2019: 1423-1429.

[68]

Yin JB, Li YT, Bi JM, Pang XZ, Li LJ. Research on grain refinement of Al-2Ti-B-Ce and Al-5Ti-B-Ce master alloys on industrial pure aluminum. Light Alloy Fabr Technol. 2015; 43: 15-20.

[69]

Jeon S, Heo T, Hwang S-Y, et al. Reversible disorder-order transitions in atomic crystal nucleation. Science. 2021; 371(6528): 498-503.

[70]

Turnbull D. Theory of catalysis of nucleation by surface patches. Acta Metall. 1953; 1: 8-14.

[71]

Kaplan WD, Kauffmann Y. Structural order in liquids induced by interfaces with crystals. Annu Rev Mater Res. 2006; 36: 1-48.

[72]

Haghayeghi R, Qian M. Initial crystallisation or nucleation in a liquid aluminium alloy containing spinel seeds. Mater Lett. 2017; 196: 358-360.

[73]

Liotti E, Arteta C, Zisserman A, Lui A, Lempitsky V, Grant PS. Crystal nucleation in metallic alloys using x-ray radiography and machine learning. Sci Adv. 2018; 4: eaar4004.

[74]

Greer Al, Cooper Ps, Meredith Mw, et al. Grain refinement of aluminium alloys by inoculation. Adv Eng Mater. 2003; 5(1-2): 81-91.

[75]

Shen P, Fujii H, Matsumoto T, Nogi K. The influence of surface structure on wetting of α-Al2O3 by aluminum in a reduced atmosphere. Acta Mater. 2003; 51(16): 4897-4906.

[76]

Cao S, Zeng L, Xia M, et al. Quantitative relationship between the nucleation undercooling of liquid iron and its liquid structure: investigated by in situ synchrotron radiation. Metall Mater Trans A. 2020; 51(8): 3754-3758.

[77]

Lee SB, Kim Y-M. Direct observation of in-plane ordering in the liquid at a liquid Al/α-Al2O3(1¯102¯1¯102¯) interface. Acta Mater. 2011; 59(4): 1383-1388.

[78]

Iqbal N, van Dijk NH, Offerman SE, Moret MP, Katgerman L, Kearley GJ. Real-time observation of grain nucleation and growth during solidification of aluminium alloys. Acta Mater. 2005; 53(10): 2875-2880.

[79]

Iqbal N, van Dijk NH, Offerman SE, et al. In situ investigation of the crystallization kinetics and the mechanism of grain refinement in aluminum alloys. Mater Sci Eng A. 2006; 416(1-2): 18-32.

[80]

Brown AJ, Dong HB, Howes PB, Nicklin CL. In situ observation of the orientation relationship at the interface plane between substrate and nucleus using X-ray scattering techniques. Scripta Mater. 2014; 77: 60-63.

[81]

Robinson IK. Crystal truncation rods and surface roughness. Phys Rev B. 1986; 33(6): 3830-3836.

[82]

Feidenhans'l R. Surface structure determination by X-ray diffraction. Surf Sci Rep. 1989; 10(3): 105-188.

[83]

Robinson IK, Tweet DJ. Surface X-ray diffraction. Rep Prog Phys. 1992; 55(5): 599-651.

[84]

Vlieg E. Integrated intensities using a six-circle surface X-ray diffractometer. J Appl Crystallogr. 1997; 30(5): 532-543.

[85]

Gustafson J, Shipilin M, Zhang C, et al. High-energy surface X-ray diffraction for fast surface structure determination. Science. 2014; 343(6172): 758-761.

[86]

Nicklin C. Capturing surface processes. Science. 2014; 343(6172): 739-740.

[87]

Bracco JN, Lee SS, Stubbs JE, et al. Hydration structure of the Barite (001)-water interface: comparison of X-ray reflectivity with molecular dynamics simulations. J Phys Chem C. 2017; 121(22): 12236-12248.

[88]

de Poel W, Vaessen SL, Drnec J, et al. Metal ion-exchange on the muscovite mica surface. Surf Sci. 2017; 665: 56-61.

[89]

Vonk V, Cremers M, de Jong A, Pintea S, Vlieg E. Atomic layering and misfit-induced densification at the Si(111)/In solid-liquid interface. Surf Sci. 2014; 621: 69-76.

[90]

Brown AJ. Exploring the use of synchrotron X-ray scattering methods for the detection of heterogeneous nucleation. Ph.D., University of Leicester. 2015.

[91]

Zhang H, Peng S, Long X, et al. Wall-induced phase transition controlled by layering freezing. Phys Rev E. 2014; 89(3):032412.

[92]

Zhang H, Peng S, Mao L, et al. Freezing of Lennard-Jones fluid on a patterned substrate. Phys Rev E. 2014; 89(6):062410.

[93]

Men H, Fan Z. Atomic ordering in liquid aluminium induced by substrates with misfits. Comput Mater Sci. 2014; 85: 1-7.

[94]

Men H, Fan Z. Prenucleation induced by crystalline substrates. Metall Mater Trans A. 2018; 49(7): 2766-2777.

[95]

Zhang Q, Çaǧın T, van Duin A, Goddard WA, Qi Y, Hector LG. Adhesion and nonwetting-wetting transition in the Al/α-Al2O3 interface. Phys Rev B. 2004; 69(4):045423.

[96]

Yan R, Sun WZ, Ma SD, Jing T, Dong HB. The orientation dependence of liquid ordering at α-Al2O3/Al solid-liquid interfaces: a molecular dynamics study. Comput Mater Sci. 2020; 174:109489.

[97]

Fujinaga T, Watanabe Y, Shibuta Y. Nucleation dynamics in Al solidification with Al-Ti refiners by molecular dynamics simulation. Comput Mater Sci. 2020; 182:109763.

[98]

Zope RR, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system. Phys Rev B. 2003; 68(2):024102.

[99]

Rosenbrock CW, Gubaev K, Shapeev AV, et al. Machine-learned interatomic potentials for alloys and alloy phase diagrams. npj Comput Mater. 2021; 7: 1-9.

[100]

Wang J, Horsfield A, Schwingenschlögl U, Lee PD. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: an ab initio molecular dynamics study. Phys Rev B. 2010; 82(18):184203.

[101]

Kang J, Zhu J, Curtis C, et al. Atomically abrupt liquid-oxide interface stabilized by self-regulated interfacial defects: the case of Al/Al2O3 interfaces. Phys Rev Lett. 2012; 108(22):226105.

[102]

Ma S, Yan R, Zong N, Davidchack RL, Jing T, Dong H. Unveiling the influence of interfacial bonding and dynamics on solid/liquid interfacial structures: an ab initio molecular dynamics study of (0001) sapphire-liquid Al interfaces. Phys Rev Mater. 2020; 4(2):023401.

[103]

Phongpreecha T, Nicholas JD, Bieler TR, Qi Y. Computational design of metal oxides to enhance the wetting and adhesion of silver-based brazes on yttria-stabilized-zirconia. Acta Mater. 2018; 152: 229-238.

[104]

Fang C, Fan Z. Prenucleation at the liquid-Al/α-Al2O3 and the liquid-Al/MgO interfaces. Comput Mater Sci. 2020; 171:109258.

[105]

Fang CM, Fan Z. Atomic ordering at the liquid-Al/MgAl2O4 interfaces from ab initio molecular dynamics simulations. Metall Mater Trans A. 2020; 51(12): 6318-6326.

[106]

Fang C, Yasmin S, Fan Z. Interfacial interaction and prenucleation at liquid-Al/γ-Al2O31 1 1 interfaces. J Phys Commun. 2021; 5:015007.

[107]

Davidchack RL, Laird BB. Simulation of the hard-sphere crystal-melt interface. J Chem Phys. 1998; 108(22): 9452-9462.

[108]

Dolynchuk O, Tariq M, Thurn-Albrecht T. Phenomenological theory of first-order prefreezing. J Phys Chem Lett. 2019; 10(8): 1942-1946.

[109]

Huisman WJ, Peters JF, Zwanenburg MJ, et al. Layering of a liquid metal in contact with a hard wall. Nature. 1997; 390(6658): 379-381.

[110]

Fang CM, Men H, Fan Z. Effect of substrate chemistry on prenucleation. Metall Mater Trans A. 2018; 49(12): 6231-6242.

[111]

Dijkstra M. Capillary freezing or complete wetting of hard spheres in a planar hard slit? Phys Rev Lett. 2004; 93(10):108303.

RIGHTS & PERMISSIONS

2024 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/