Multiscale simulations of amorphous and crystalline AgSnSe2 alloy for reconfigurable nanophotonic applications

Xueyang Shen , Siyu Zhang , Yihui Jiang , Tiankuo Huang , Suyang Sun , Wen Zhou , Jiangjing Wang , Riccardo Mazzarello , Wei Zhang

Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e62

PDF
Materials Genome Engineering Advances ›› 2025, Vol. 3 ›› Issue (1) : e62 DOI: 10.1002/mgea.62
RESEARCH ARTICLE

Multiscale simulations of amorphous and crystalline AgSnSe2 alloy for reconfigurable nanophotonic applications

Author information +
History +
PDF

Abstract

Chalcogenide phase-change materials (PCM) have been explored in novel nonvolatile memory and neuromorphic computing technologies. Upon fast crystallization process, the conventional PCM undergo a semiconductor-to-semiconductor transition. However, some PCM change from a semiconducting amorphous phase to a metallic crystalline phase with low conductivity (“bad metal”). In this work, we focus on new “bad metal” PCM, namely, AgSnSe2, and carry out multiscale simulations to evaluate its potential for reconfigurable nanophotonic devices. We study the structural features and optical properties of both crystalline and amorphous AgSnSe2 via density functional theory (DFT) calculations and DFT-based ab initio molecular dynamic (AIMD) simulations. Then we use the calculated optical profiles as input parameters for finite difference time domain (FDTD) modeling of waveguide and metasurface devices. Our multiscale simulations predict AgSnSe2 to be a promising candidate for phase-change photonic applications.

Keywords

metasurface / multiscale simulation / nanophotonics / optical properties / phase-change materials

Cite this article

Download citation ▾
Xueyang Shen, Siyu Zhang, Yihui Jiang, Tiankuo Huang, Suyang Sun, Wen Zhou, Jiangjing Wang, Riccardo Mazzarello, Wei Zhang. Multiscale simulations of amorphous and crystalline AgSnSe2 alloy for reconfigurable nanophotonic applications. Materials Genome Engineering Advances, 2025, 3(1): e62 DOI:10.1002/mgea.62

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater. 2007; 6(11): 824-832.

[2]

Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M. A map for phase-change materials. Nat Mater. 2008; 7(12): 972-977.

[3]

Wong HSP, Raoux S, Kim S, et al. Phase change memory. Proc IEEE. 2010; 98(12): 2201-2227.

[4]

Rao F, Ding K, Zhou Y, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science. 2017; 358(6369): 1423-1427.

[5]

Zhang W, Mazzarello R, Wuttig M, Ma E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater. 2019; 4(3): 150-168.

[6]

Gholipour B. The promise of phase-change materials. Science. 2019; 366(6462): 186-187.

[7]

Yang JJ, Strukov DB, Stewart DR. Memristive devices for computing. Nat Nanotechnol. 2013; 8(1): 13-24.

[8]

Wong HSP, Salahuddin S. Memory leads the way to better computing. Nat Nanotechnol. 2015; 10(3): 191-194.

[9]

Tuma T, Pantazi A, Le Gallo M, Sebastian A, Eleftheriou E. Stochastic phase-change neurons. Nat Nanotechnol. 2016; 11(8): 693-699.

[10]

Zhang W, Wuttig M. Phase change materials and superlattices for non-volatile memories. Phys Status Solidi Rapid Res Lett. 2019; 13(4):1900130.

[11]

Xu M, Mai X, Lin J, et al. Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv Funct Mater. 2020; 30(50):2003419.

[12]

Christensen DV, Dittmann R, Linares-barranco B, et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph Comput Eng. 2022; 2(2):022501.

[13]

Raoux S, Wełnic W, Ielmini D. Phase change materials and their application to nonvolatile memories. Chem Rev. 2010; 110(1): 240-267.

[14]

Wełnic W, Botti S, Reining L, Wuttig M. Origin of the optical contrast in phase-change materials. Phys Rev Lett. 2007; 98(23):236403.

[15]

Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M. Resonant bonding in crystalline phase-change materials. Nat Mater. 2008; 7(8): 653-658.

[16]

Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications. Nat Photonics. 2017; 11(8): 465-476.

[17]

Chen X, Xue Y, Sun Y, et al. Neuromorphic photonic nemory devices using ultrafast, non-volatile phase-change materials. Adv Mater. 2023; 35(37):2203909.

[18]

Wang D, Zhao L, Yu S, et al. Non-volatile tunable optics by design: from chalcogenide phase-change materials to device structures. Mater Today. 2023; 68: 334-355.

[19]

Zhou W, Shen XY, Yang XL, Wang JJ, Zhang W. Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing. Int J Extrem Manuf. 2024; 6(2):022001.

[20]

Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat Photonics. 2011; 5(3): 141-148.

[21]

Rios C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory. Nat Photonics. 2015; 9(11): 725-732.

[22]

Cheng Z, Rios C, Youngblood N, Wright CD, Pernice WHP, Bhaskaran H. Device-level photonic memories and logic applications using phase-change materials. Adv Mater. 2018; 30(32):1802435.

[23]

Wang XD, Zhou W, Zhang HM, et al. Multiscale simulations of growth-dominated Sb2Te phase-change material for non-volatile photonic applications. NPJ Comput Mater. 2023; 9(1): 136.

[24]

Cheng Z, Ríos C, Pernice WHP, Wright CD, Bhaskaran H. On-chip photonic synapse. Sci Adv. 2017; 3(9):e1700160.

[25]

Feldmann J, Stegmaier M, Gruhler N, et al. Calculating with light using a chip-scale all-optical abacus. Nat Commun. 2017; 8(1):1256.

[26]

Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature. 2019; 569(7755): 208-214.

[27]

Rios C, Youngblood N, Cheng Z, et al. In-memory computing on a photonic platform. Sci Adv. 2019; 5(2):eaau5759.

[28]

Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature. 2021; 589(7840): 52-58.

[29]

Tittl A, Michel A.-KU, Schäferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater. 2015; 27(31): 4597-4603.

[30]

Yu Z, Zheng J, Xu P, Zhang W, Wu Y. Ultracompact electro-optical modulator-based Ge2Sb2Te5 on Silicon. IEEE Photon Technol Lett. 2018; 30(3): 250-253.

[31]

Ríos C, Du Q, Zhang Y, et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX. 2022; 3(1): 26.

[32]

Cheng Z, Milne T, Salter P, et al. Antimony thin films demonstrate programmable optical nonlinearity. Sci Adv. 2021; 7(1):eabd7097.

[33]

Zhang Y, Chou JB, Li J, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat Commun. 2019; 10(1):4279.

[34]

Wu C, Hs Y, Lee S, Peng R, Takeuchi I, Li M. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat Commun. 2021; 12(1): 96.

[35]

Zhang Y, Fowler C, Liang J, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat Nanotechnol. 2021; 16(6): 661-666.

[36]

Gu T, Kim HJ, Rivero-Baleine C, Hu J. Reconfigurable metasurfaces towards commercial success. Nat Photonics. 2023; 17(1): 48-58.

[37]

Delaney M, Zeimpekis I, Lawson D, Hewak DW, Muskens O. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv Funct Mater. 2020; 30(36):2002447.

[38]

Delaney M, Zeimpekis I, Du H, et al. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci Adv. 2021; 7(25):eabg3500.

[39]

Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J Appl Phys. 1991; 69(5): 2849-2856.

[40]

Yamada N, Matsunaga T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J Appl Phys. 2000; 88(12): 7020-7028.

[41]

Siegrist T, Jost P, Volker H, et al. Disorder-induced localization in crystalline phase-change materials. Nat Mater. 2011; 10(3): 202-208.

[42]

Zhang B, Zhang W, Shen Z, et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl Phys Lett. 2016; 108(19):191902.

[43]

Jiang TT, Wang XD, Wang JJ, et al. In situ characterization of vacancy ordering in Ge-Sb-Te phase-change memory alloys. Fundam Res. 2022.

[44]

Maeda Y, Andoh H, Ikuta I, Minemura H. Reversible phase-change optical data storage in InSbTe alloy films. J Appl Phys. 1988; 64(4): 1715-1719.

[45]

Kim ET, Lee JY, Kim YT. Investigation of electrical characteristics of the In3Sb1Te2 ternary alloy for application in phase-change memory. Phys Status Solidi RRL. 2009; 3(4): 103-105.

[46]

Deringer VL, Zhang W, Rausch P, Mazzarello R, Dronskowski R, Wuttig M. A chemical link between Ge-Sb-Te and In-Sb-Te phase-change materials. J Mater Chem C. 2015; 3(37): 9519-9523.

[47]

Bilovol V, Gil Rebaza AV, Mudarra Navarro AM, Errico L, Fontana M, Arcondo B. Indium local geometry in In-Sb-Te thin films using XANES and DFT calculations. Appl Surf Sci. 2017; 425: 1066-1073.

[48]

Heßler A, Wahl S, Leuteritz T, et al. In3SbTe2 as a programmable nanophotonics material platform for the infrared. Nat Commun. 2021; 12(1): 924.

[49]

Heßler A, Wahl S, Kristensen PT, Wuttig M, Busch K, Taubner T. Nanostructured In3SbTe2 antennas enable switching from sharp dielectric to broad plasmonic resonances. Nanophotonics. 2022; 11(17): 3871-3882.

[50]

Conrads L, Schüler L, Wirth KG, Wuttig M, Taubner T. Direct programming of confined surface phonon polariton resonators with the plasmonic phase-change material In3SbTe2. Nat Commun. 2024; 15(1):3472.

[51]

Conrads L, Honné N, Ulm A, et al. Reconfigurable and polarization-dependent grating absorber for large-area emissivity control based on the plasmonic phase-change material In3SbTe2. Adv Opt Mater. 2023; 11(8):2202696.

[52]

Heßler A, Conrads L, Wirth KG, Wuttig M, Taubner T. Reconfiguring magnetic infrared resonances with the plasmonic phase-change material In3SbTe2. ACS Photonics. 2022; 9(5): 1821-1828.

[53]

Sun Z, Zhou J, Ahuja R. Structure of phase change materials for data storage. Phys Rev Lett. 2006; 96(5):055507.

[54]

Caravati S, Bernasconi M, Kühne TD, Krack M, Parrinello M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl Phys Lett. 2007; 91(17):171906.

[55]

Akola J, Jones RO. Structural phase transitions on the nanoscale: the crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys Rev B. 2007; 76(23):235201.

[56]

Hegedüs J, Elliott SR. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat Mater. 2008; 7(5): 399-405.

[57]

Huang B, Robertson J. Bonding origin of optical contrast in phase-change memory materials. Phys Rev B. 2010; 81(8):081204.

[58]

Xu YZ, Zhou YX, Wang XD, et al. Unraveling crystallization mechanisms and electronic structure of phase-change materials by large-scale ab initio simulations. Adv Mater. 2022; 34(11):2109139.

[59]

de Pablo JJ, Jackson NE, Webb MA, et al. New frontiers for the materials genome initiative. NPJ Comput Mater. 2019; 5(1): 41.

[60]

Xie J. Prospects of materials genome engineering frontiers. MGE Adv. 2023; 1(2):e17.

[61]

Chen L.-Q, Opinion . Chemical potential and materials genome. MGE Adv. 2023; 1(2):e13.

[62]

Li H, Xu Y, Duan W. Ab initio artificial intelligence: future research of materials genome initiative. MGE Adv. 2023; 1(2):e16.

[63]

Tong-Yi Z, Xing-Jun L. Informatics is fueling new materials discovery. J Mater Inf. 2021; 1(1): 6.

[64]

Sosso GC, Miceli G, Caravati S, Behler J, Bernasconi M. Neural network interatomic potential for the phase change material GeTe. Phys Rev B. 2012; 85(17):174103.

[65]

Abou El Kheir O, Bonati L, Parrinello M, Bernasconi M. Unraveling the crystallization kinetics of the Ge2Sb2Te5 phase change compound with a machine-learned interatomic potential. NPJ Comput Mater. 2024; 10(1): 33.

[66]

Wang G, Sun Y, Zhou J, Sun Z. PotentialMind: graph convolutional machine learning potential for Sb-Te binary compounds of multiple stoichiometries. J Phys Chem C. 2023; 127(51): 24724-24733.

[67]

Mocanu FC, Konstantinou K, Lee TH, et al. Modeling the phase-change memory material, Ge2Sb2Te5, with a machine-learned interatomic potential. J Phys Chem B. 2018; 122(38): 8998-9006.

[68]

Mo P, Li C, Zhao D, et al. Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture. NPJ Comput Mater. 2022; 8(1): 107.

[69]

Zhou Y.-X, Zhang H.-Y, Deringer VL, Zhang W. Structure and dynamics of supercooled liquid Ge2Sb2Te5 from machine-learning-driven simulations. Phys Status Solidi RRL. 2021; 15(3):2000403.

[70]

Zhou Y, Zhang W, Ma E, Deringer VL. Device-scale atomistic modelling of phase-change memory materials. Nat Electron. 2023; 6(10): 746-754.

[71]

Wuttig M, Deringer VL, Gonze X, Bichara C, Raty J.-Y. Incipient metals: functional materials with a unique bonding mechanism. Adv Mater. 2018; 30(51):1803777.

[72]

Zhu M, Cojocaru-Mirédin O, Mio AM, et al. Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding. Adv Mater. 2018; 30(18):1706735.

[73]

Kooi BJ, Wuttig M. Chalcogenides by design: functionality through metavalent bonding and confinement. Adv Mater. 2020; 32(21):1908302.

[74]

Zhang W, Zhang H, Sun S, et al. Metavalent bonding in layered phase-change memory materials. Adv Sci. 2023; 10(15):2300901.

[75]

Wuttig M, Schön C.-F, Lötfering J, Golub P, Gatti C, Raty J.-Y. Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties. Adv Mater. 2023; 35(20):2208485.

[76]

Raty J.-Y, Bichara C, Schön C.-F, Gatti C, Wuttig M. Tailoring chemical bonds to design unconventional glasses. Proc Natl Acad Sci. 2024; 121(2):e2316498121.

[77]

Lee TH, Elliott SR. Chemical bonding in chalcogenides: the concept of multicenter hyperbonding. Adv Mater. 2020; 32(28):2000340.

[78]

Lee MH, Byeon D.-G, Rhyee J.-S, Ryu B. Defect chemistry and enhancement of thermoelectric performance in Ag-doped Sn1+δ-xAgxTe. J Mater Chem A. 2017; 5(5): 2235-2242.

[79]

Liu CY, Huang ZW, Wang DH, et al. Dynamic Ag+-intercalation with AgSnSe2 nano-precipitates in Cl-doped polycrystalline SnSe2 toward ultra-high thermoelectric performance. J Mater Chem A. 2019; 7(16): 9761-9772.

[80]

Wold A, Brec R. Structure NaCl des phases AgxSn1-xX (X = S, Se). Mater Res Bull. 1976; 11(6): 761-765.

[81]

Ren Z, Kriener M, Taskin AA, Sasaki S, Segawa K, Ando Y. Anomalous metallic state above the upper critical field of the conventional three-dimensional superconductor AgSnSe2 with strong intrinsic disorder. Phys Rev B. 2013; 87(6):064512.

[82]

Wamwangi DM, Wuttig M. Application of P Electron Theory to Predict New Materials for Rewritable Optical Recording. RWTH Aachen University; 2004. http://publications.rwth-aachen.de/record/62011/files/62011.pdf

[83]

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993; 47(1): 558-561.

[84]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758-1775.

[85]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[86]

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010; 132(15):154104.

[87]

Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984; 81(1): 511-519.

[88]

Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985; 31(3): 1695-1697.

[89]

Yusibov YA, Alverdiev ID, Mashadieva LF, Babanly DM, Mamedov AN, Babanly MB. Experimental study and 3D modeling of the phase diagram of the Ag-Sn-Se system. Russ J Inorg Chem. 2018; 63(12): 1622-1635.

[90]

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. J Chem Phys. 2003; 118(18): 8207-8215.

[91]

Caravati S, Bernasconi M, Parrinello M. First principles study of the optical contrast in phase change materials. J Phys Condens Matter. 2010; 22(31):315801.

[92]

Wang XD, Shen XY, Sun SY, Zhang W. Tailoring the structural and optical properties of germanium telluride phase-change materials by indium incorporation. Nanomaterials. 2021; 11(11):3029.

[93]

Zhang HY, Wang XD, Zhang W. First-principles investigation of amorphous Ge-Sb-Se-Te optical phase-change materials. Opt Mater Express. 2022; 12(7): 2497-2506.

[94]

Sun S, Zhu L, Zhang W. Bonding nature and optical properties of As2Te3 phase-change material. Phys Status Solidi RRL. 2022; 16(9):2100626.

[95]

Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008; 41(3): 653-658.

[96]

Ansys Inc. Lumerical FDTD solutions. https://www.ansys.com/products/photonics/fdtd

[97]

Zhang W, Deringer VL, Dronskowski R, Mazzarello R, Ma E, Wuttig M. Density-functional theory guided advances in phase-change materials and memories. MRS Bull. 2015; 40(10): 856-869.

[98]

Zewdie GM, Zhou Y, Sun L, et al. Chemical design principles for cache-type Sc-Sb-Te phase-change memory materials. Chem Mater. 2019; 31(11): 4008-4015.

[99]

Wang XP, Li XB, Chen NK, et al. Time-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation. NPJ Comput Mater. 2020; 6(1): 31.

[100]

Chen B, Li J, Wang X, et al. Insights into the heterogeneous nuclei of an ultrafast-crystallizing glassy solid. Adv Funct Mater. 2024; 34(18):2314565.

[101]

Lee TH, Elliott SR. Structural role of vacancies in the phase transition of Ge2Sb2Te5 memory materials. Phys Rev B. 2011; 84(9):094124.

[102]

Xu M, Cheng YQ, Wang L, et al. Pressure tunes electrical resistivity by four orders of magnitude in amorphous Ge2Sb2Te5 phase-change memory alloy. Proc Natl Acad Sci. 2012; 109(18): E1055-E1062.

[103]

Xu M, Gu R, Qiao C, et al. Unraveling the structural and bonding nature of antimony sesquichalcogenide glass for electronic and photonic applications. J Mater Chem C. 2021; 9(25): 8057-8065.

[104]

Wang V, Xu N, Liu JC, Tang G, Geng W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun. 2021; 267:108033.

[105]

Watts CM, Liu X, Padilla WJ. Metamaterial electromagnetic wave absorbers. Adv Mater. 2012; 24(23): OP98-OP120.

RIGHTS & PERMISSIONS

2024 The Author(s). Materials Genome Engineering Advances published by Wiley-VCH GmbH on behalf of University of Science and Technology Beijing.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/