
Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene
Jing Lin1,, Tao Ban1,, Tian Li1, Ye Sun2, Shenglan Zhou1, Rushuo Li1, Yanjing Su3, Jitti Kasemchainan4, Hongyi Gao1(), Lei Shi2(
), Ge Wang1(
)
Materials Genome Engineering Advances ›› 2024, Vol. 2 ›› Issue (3) : e61.
Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene
Metal-organic frameworks (MOFs), renowned for structural diversity and design flexibility , exhibit potential in catalysis. However, the pursuit of higher catalytic activity through defects often compromises stability, requiring a delicate balance. Traditional trial-and-error method for optimizing synthesis parameters within the complex chemical space is inefficient. Herein, taking the typical MOF UiO-66(Ce) as an illustrative example, a closed loop workflow is built, which integrates machine learning (ML)-assissted prediction, multi-objective optimization (MOO) and experimental preparation to synergistically optimize the defect content and thermal stability of UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene (DCPD). An automatic data extraction program ensures data accuracy, establishing a highquality database. ML is employed to explore the intricate synthesis-structureproperty correlations, enabling precise delineation of pure-phase subspace and accurate predictions of properties. After two iterations, MOO model identifies optimal protocols for high defect content (>40%) and thermal stability (>300°C). The optimized UiO-66(Ce) exhibits superior catalytic performance in hydrogenation of DCPD, validating the precision and reliability of our methodology. This ML-assisted approach offers a valuable paradigm for solving the trade-off riddle in materials field.
defect content / machine learning / metal-organic frameworks / multi-objective optimization / thermal stability
1 | Huang NY, Li B, Wu D, et al. Crystal engineering of MOF-derived bimetallic oxide solid solution anchored with Au nanoparticles for photocatalytic CO2 reduction to syngas and C2 hydrocarbons. Angew Chem Int Ed Engl. 2024;63(21):e202319177. |
2 | Sun L, Pan X, Xie YN, et al. Accelerated dynamic reconstruction in metal-organic frameworks with ligand defects for selective electrooxidation of amines to azos coupling with hydrogen production. Angew Chem Int Ed Engl. 2024;63(21):e202402176. |
3 | Cho JH, Kim Y, Yu HK, Kim SY. Advancements in two-dimensional covalent organic framework nanosheets for electrocatalytic energy conversion: current and future prospects. Energy Mater. 2024;4(2). |
4 | Ahmad M, Chen J, Liu J, et al. Metal-organic framework-based single-atom electro-/photocatalysts: synthesis, energy applications, and opportunities. Carbon Energy. 2023;6(1). |
5 | Wang J, Liu J, Wang H, et al. A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metalorganic frameworks. Nat Commun. 2024;15(1):1904. |
6 | Cong S, Zhou Y, Luo C, et al. Designing metal-organic framework (MOF) membranes for isomer separation. Angew Chem Int Ed Engl 2024;63(15):e202319894. |
7 | Wang G, Tang Z, Gao Y, et al. Phase change thermal storage materials for interdisciplinary applications. Chem Rev. 2023;123(11):6953-7024. |
8 | Liu P, Huang M, Chen X, et al. Polypyrrole-boosted photothermal energy storage in MOF-based phase change materials. Interdiscip Mater. 2023;2(3):423-433. |
9 | Wang SQ, Gu X, Wang X, et al. Defect-engineering of Zr(IV)-based metal-organic frameworks for regulating CO2 photoreduction. Chem Eng J. 2022;429:132157. |
10 | Ren J, Ledwaba M, Musyoka NM, et al. Structural defects in metalorganic frameworks (MOFs): formation, detection and control towards practices of interests. Coord Chem Rev. 2017;349:169-197. |
11 | Li RS, Wang LM, Zhou PY, et al. Electronic state, abundance and microenvironment modulation of Ru nanoclusters within hierarchically porous UiO-66 (Ce) for efficient hydrogenation of dicyclopentadiene. Chin J Catal. 2024;56:150-165. |
12 | Chu L, Guo J, Wang L, et al. Synthesis of defected UiO-66 with boosting the catalytic performance via rapid crystallization. Appl Organomet Chem. 2021;36(3). |
13 | Moore SC, Smith MR, Trettin JL, Yang RA, Sarazen ML. Kinetic impacts of defect sites in metal-organic framework catalysts under varied driving forces. ACS Energy Lett. 2023;8(3):1397-1407. |
14 | Liu S, Zhang Y, Zhu F, et al. Mg-MOF-74 derived defective framework for hydrogen storage at above-ambient temperature assisted by Pt catalyst. Adv Sci. 2024;11(18):e2401868. |
15 | Taddei M. When defects turn into virtues: the curious case of zirconiumbased metal-organic frameworks. Coord Chem Rev. 2017;343:1-24. |
16 | Younis SA, Bhardwaj N, Bhardwaj SK, Kim KH, Deep A. Rare earth metal-organic frameworks (RE-MOFs): synthesis, properties, and biomedical applications. Coord Chem Rev. 2021;429:213620. |
17 | Li S, Dong Z, Jin J, et al. Optimal design of high-performance rareearth-free wrought magnesium alloys using machine learning. Mat Genome Eng Adv. 2024;2(2):e45. |
18 | Burger B, Maffettone PM, Gusev VV, et al. A mobile robotic chemist. Nature. 2020;583(7815):237-241. |
19 | Wang CA, An G, Lin J, et al. Aromatic compounds-mediated synthesis of anatase-free hierarchical TS-1 zeolite: exploring design strategies via machine learning and enhanced catalytic performance. Aggregate. 2023;4(4). |
20 | Lin J, Liu Z, Guo Y, et al. Machine learning accelerates the investigation of targeted MOFs: performance prediction, rational design and intelligent synthesis. Nano Today. 2023;49:101802. |
21 | Moosavi SM, Chidambaram A, Talirz L, Haranczyk M, Stylianou KC, Smit B. Capturing chemical intuition in synthesis of metal-organic frameworks. Nat Commun. 2019;10(1):539. |
22 | Chen P, Tang Z, Zeng Z, et al. Machine-learning-guided morphology engineering of nanoscale metal-organic frameworks. Matter. 2020;2(6):1651-1666. |
23 | Xie Y, Zhang C, Deng H, et al. Accelerate synthesis of metal-organic frameworks by A robotic platform and bayesian optimization. ACS Appl Mater Interfaces. 2021;13(45):53485-53491. |
24 | Gou W, Shi ZZ, Zhu Y, et al. Multi-objective optimization of three mechanical properties of Mg alloys through machine learning. Mat. Genome Eng Adv. 2024;e54. |
25 | Lammert M, Wharmby MT, Smolders S, et al. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chem Commun. 2015;51(63):12578-12581. |
26 | Yang J, Li K, Li C, Gu J. Intrinsic apyrase-like activity of cerium-based metal-organic frameworks (MOFs): dephosphorylation of adenosine tri-and diphosphate. Angew Chem Int Ed Engl. 2020;59(51):22952-22956. |
27 | Chen H, Liu C, Guo W, et al. Functionalized UiO-66(Ce) for photocatalytic organic transformation: the role of active sites modulated by ligand functionalization. Catal Sci Technol. 2022;12(6):1812-1823. |
28 | Hanaoka K. Bayesian optimization for goal-oriented multi-objective inverse material design. iScience. 2021;24(7):102781. |
29 | Nandy A, Duan C, Kulik HJ. Using machine learning and data mining to leverage community knowledge for the engineering of stable metalorganic frameworks. J Am Chem Soc. 2021;143(42):17535-17547. |
30 | Shearer GC, Forselv S, Chavan S, et al. In situ infrared spectroscopic and gravimetric characterisation of the solvent removal and dehydroxylation of the metal organic frameworks UiO-66 and UiO-67. Top Catal. 2013;56(9-10):770-782. |
31 | Sannes DK, Øien-Ødegaard S, Aunan E, Nova A, Olsbye U. Quantification of linker defects in UiO-type metal-organic frameworks. Chem Mater. 2023;35(10):3793-3800. |
32 | Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321-357. |
33 | Altmann A, Tolosi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance measure. Bioinformatics. 2010;26(10):1340-1347. |
34 | Lundberg SM, Lee SIA. Unified approach to interpreting model predictions. NIPS (News Physiol Sci). 2017;30. |
35 | Jin HG, Wang M, Wen JX, et al. Oxygen vacancy-rich mixed-valence cerium MOF: an efficient separator coating to high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021;13(3):3899-3910. |
36 | Paszkowicz W. Genetic algorithms, a nature-inspire. tool: survey of applications in materials science and related fields. Mat. Manuf. Process. 2009;24(2):174-197. |
37 | Li DQ, Liu JC, Liu DZ, Wang FA. Solubilities of terephthalaldehydic, Ptoluic, benzoic, terephthalic and isophthalic acids in N, Ndimethylformamide from 294.75 to 370.45 K. Fluid Phase Equil. 2002;200(1):69-74. |
38 | Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:11. |
39 | Sun J, Wen J, Wu G, et al. Harmonizing the electronic structures on BiOI with active oxygen vacancies toward facet-dependent antibacterial photodynamic therapy. Adv Funct Mater. 2020;30(42). |
40 | Ren Y, Guo D, Zhao Z, et al. Singlet oxygen mediated photocatalytic antimonite decontamination in water using nanoconfined TiO2. Chem Eng J. 2022;435:134832. |
41 | Liu C, Shi YZ, Chen Q, et al. The defect-modulated UiO-66(Ce) MOFs for enhancing photocatalytic selective organic oxidations. Rare Met. 2024:1-12. |
42 | Feng X, Jena HS, Krishnaraj C, et al. Creation of exclusive artificial cluster defects by selective metal removal in the (Zn, Zr) mixed-metal UiO-66. J Am Chem Soc. 2021;143(51):21511-21518. |
43 | Liu L, Chen Z, Wang J, et al. Imaging defects and their evolutionin a metal-organic framework at sub-unit-cell resolution. Nat Chem. 2019;11(7):622-628. |
44 | Wu ZL, Tian B, Xu HJ. Improving color rendering index of Mn-doped ZnO nanorods on silicon-based substrate. Rare Met. 2016;36(9):711-717. |
45 | Kim M, Park G, Jo K, Lee H. Enhanced redox properties of Gd-doped CeO2-TiO2 induced by oxygen vacancies and disordered structure. Mat. Today Chem. 2023;29:101440. |
46 | Chaemchuen S, Heynderickx PM, Verpoort F. Kinetic modeling of oleic acid esterification with UiO-66: from intrinsic experimental data to kinetics via elementary reaction steps. Chem Eng J. 2020;394:124816. |
47 | Liang W, Wang X, Yang W, et al. Tailoring and identifying bronsted acid sites on metal oxo-clusters of metal-organic frameworks for catalytic transformation. ACS Cent Sci. 2023;9(1):27-35. |
48 | Liu Z, Wang L, Wang C, et al. Modulating the strong metal-support interactions by regulating the chemical microenvironment of Pt confined in MOFs for low temperature hydrogenation of DCPD. Chem Eng J. 2024;479:147601. |
/
〈 |
|
〉 |