It is crucial to understand the glucose control within our bodies. Bariatric/metabolic surgeries, including laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB), provide an avenue for exploring the potential key factors involved in maintaining glucose homeostasis since these surgeries have shown promising results in improving glycemic control among patients with severe type 2 diabetes (T2D). For the first time, a markedly altered population of serum proteins in patients after LSG was discovered and analyzed through proteomics. Apolipoprotein A-IV (apoA-IV) was revealed to be increased dramatically in diabetic obese patients following LSG, and a similar effect was observed in patients after RYGB surgery. Moreover, recombinant apoA-IV protein treatment was proven to enhance insulin secretion in isolated human islets. These results showed that apoA-IV may play a crucial role in glycemic control in humans, potentially through enhancing insulin secretion in human islets. ApoA-IV was further shown to enhance energy expenditure and improve glucose tolerance in diabetic rodents, through stimulating glucose-dependent insulin secretion in pancreatic β cells, partially via Gαs-coupled GPCR/cAMP (G protein-coupled receptor/cyclic adenosine monophosphate) signaling. Furthermore, T55–121, truncated peptide 55–121 of apoA-IV, was discovered to mediate the function of apoA-IV. These collective findings contribute to our understanding of the relationship between apoA-IV and glycemic control, highlighting its potential as a biomarker or therapeutic target in managing and improving glucose regulation.
Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels. Herein, we summarize the latest developments in phospholipid biosensor design and application, emphasizing the contribution of cutting-edge imaging techniques to elucidating phospholipid dynamics and distribution with unparalleled spatiotemporal precision.
Bromodomain and extra-terminal domain (BET) proteins, which function partly through MYC proto-oncogene (MYC), are critical epigenetic readers and emerging therapeutic targets in cancer. Whether and how BET inhibition simultaneously induces metabolic remodeling in cancer cells remains unclear. Here we find that even transient BET inhibition by JQ-1 and other pan-BET inhibitors (pan-BETis) blunts liver cancer cell proliferation and tumor growth. BET inhibition decreases glycolytic gene expression but enhances mitochondrial glucose and glutamine oxidative metabolism revealed by metabolomics and isotope labeling analysis. Specifically, BET inhibition downregulates miR-30a to upregulate glutamate dehydrogenase 1 (GDH1) independent of MYC, which produces α- ketoglutarate for mitochondrial oxidative phosphorylation (OXPHOS). Targeting GDH1 or OXPHOS is synthetic lethal to BET inhibition, and combined BET and OXPHOS inhibition therapeutically prevents liver tumor growth in vitro and in vivo. Together, we uncover an important epigenetic-metabolic crosstalk whereby BET inhibition induces MYC-independent and GDH1-dependent glutamine metabolic remodeling that can be exploited for innovative combination therapy of liver cancer.
Histone methylation plays a crucial role in tumorigenesis. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that regulates chromatin structure and gene expression. EZH2 inhibitors (EZH2is) have been shown to be effective in treating hematologic malignancies, while their effectiveness in solid tumors remains limited. One of the major challenges in the treatment of solid tumors is their hypoxic tumor microenvironment. Hypoxia-inducible factor 1-alpha (HIF-1α) is a key hypoxia responder that interacts with EZH2 to promote tumor progression. Here we discuss the implications of the relationship between EZH2 and hypoxia for expanding the application of EZH2is in solid tumors.