Probing and imaging phospholipid dynamics in live cells

Zhongsheng Wu, Yongtao Du, Tom Kirchhausen, Kangmin He

PDF(1999 KB)
PDF(1999 KB)
Life Metabolism ›› 2024, Vol. 3 ›› Issue (4) : loae014. DOI: 10.1093/lifemeta/loae014
Review Article

Probing and imaging phospholipid dynamics in live cells

Author information +
History +

Abstract

Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels. Herein, we summarize the latest developments in phospholipid biosensor design and application, emphasizing the contribution of cutting-edge imaging techniques to elucidating phospholipid dynamics and distribution with unparalleled spatiotemporal precision.

Keywords

phospholipid / biosensor / lipid-binding domain / live-cell imaging

Cite this article

Download citation ▾
Zhongsheng Wu, Yongtao Du, Tom Kirchhausen, Kangmin He. Probing and imaging phospholipid dynamics in live cells. Life Metabolism, 2024, 3(4): loae014 https://doi.org/10.1093/lifemeta/loae014

References

[1]
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008;9:112–24.
CrossRef Google scholar
[2]
Vance JE. Phospholipid synthesis and transport in mammalian cells. Traffic 2015;16:1–18.
CrossRef Google scholar
[3]
Yang Y, Lee M, Fairn GD. Phospholipid subcellular localization and dynamics. J Biol Chem 2018;293:6230–40.
CrossRef Google scholar
[4]
Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 2013;93:1019–137.
CrossRef Google scholar
[5]
Wallroth A, Haucke V. Phosphoinositide conversion in endocytosis and the endolysosomal system. J Biol Chem 2018;293:1526–35.
CrossRef Google scholar
[6]
Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006;443:651–7.
CrossRef Google scholar
[7]
Saheki Y, Bian X, Schauder CM et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. NatCell Biol 2016;18:504–15.
CrossRef Google scholar
[8]
Hammond GRV, Burke JE. Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol 2020;63:57–67.
CrossRef Google scholar
[9]
Yeung T, Gilbert GE, Shi J et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 2008;319:210–3.
CrossRef Google scholar
[10]
Bohdanowicz M, Grinstein S. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol Rev 2013;93:69–106.
CrossRef Google scholar
[11]
Nagata S, Suzuki J, Segawa K et al. Exposure of phosphatidylserine on the cell surface. Cell Death Differ 2016;23:952–61.
CrossRef Google scholar
[12]
Segawa K, Nagata S. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol 2015;25:639–50.
CrossRef Google scholar
[13]
Zegarlinska J, Piascik M, Sikorski AF et al. Phosphatidic acid—a simple phospholipid with multiple faces. Acta Biochim Pol 2018;65:163–71.
CrossRef Google scholar
[14]
Tanguy E, Wang Q, Moine H et al. Phosphatidic acid: from pleiotropic functions to neuronal pathology. Front Cell Neurosci 2019;13:2.
CrossRef Google scholar
[15]
Sakane F, Hoshino F, Murakami C. New era of diacylglycerol kinase, phosphatidic acid and phosphatidic acid-binding protein. Int J Mol Sci 2020;21:6794.
CrossRef Google scholar
[16]
Zhukovsky MA, Filograna A, Luini A et al. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019;593:2428–51.
CrossRef Google scholar
[17]
Billcliff PG, Lowe M. Inositol lipid phosphatases in membrane trafficking and human disease. Biochem J 2014;461:159–75.
CrossRef Google scholar
[18]
Burke JE. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol Cell 2018;71:653–73.
CrossRef Google scholar
[19]
Chen L, Chen XW, Huang X et al. Regulation of glucose andlipid metabolism in health and disease. Sci China Life Sci 2019;62:1420–58.
CrossRef Google scholar
[20]
Yoneda A, Kanemaru K, Matsubara A et al. Phosphatidylinositol 4,5-bisphosphate is localized in the plasma membrane outer leaflet and regulates cell adhesion and motility. Biochem BiophysRes Commun 2020;527:1050–6.
CrossRef Google scholar
[21]
Watt SA, Kular G, Fleming IN et al. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleck-strin homology domain of phospholipase Cδ1. Biochem J 2002;363:657–66.
CrossRef Google scholar
[22]
De Matteis MA, Staiano L, Emma F et al. The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat Rev Nephrol 2017;13:455–70.
CrossRef Google scholar
[23]
Festa BP, Berquez M, Gassama A et al. OCRL deficiency impairsendolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease. Hum Mol Genet 2019;28:1931–46.
CrossRef Google scholar
[24]
Vicinanza M, Di Campli A, Polishchuk E et al. OCRL controls trafficking through early endosomes via PtdIns4,5P(2)-dependent regulation of endosomal actin. EMBO J 2011;30:4970–85.
CrossRef Google scholar
[25]
Riehle RD, Cornea S, Degterev A. Role of phosphatidylinositol 3,4,5-trisphosphate in cell signaling. Adv Exp Med Biol 2013;991:105–39.
CrossRef Google scholar
[26]
Manna P, Jain SK. Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: implications for obesity and diabetes. Cell Physiol Biochem 2015;35:1253–75.
CrossRef Google scholar
[27]
Carrera AC, Anderson R. The cell biology behind the oncogenic PIP3 lipids. J Cell Sci 2019;132:jcs228395.
CrossRef Google scholar
[28]
Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 2019;20:515–34.
CrossRef Google scholar
[29]
Maekawa M, Fairn GD. Molecular probes to visualize the location, organization and dynamics of lipids. J Cell Sci 2014;127:4801–12.
[30]
Idevall-Hagren O, De Camilli P. Detection and manipulation ofphosphoinositides. Biochim Biophys Acta 2015;1851:736–45.
CrossRef Google scholar
[31]
Gillooly DJ, Morrow IC, Lindsay M et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 2000;19:4577–88.
CrossRef Google scholar
[32]
Patki V, Lawe DC, Corvera S et al. A functional PtdIns(3)P-binding motif. Nature 1998;394:433–4.
CrossRef Google scholar
[33]
Gaullier JM, Simonsen A, D’Arrigo A et al. FYVE fingers bind PtdIns(3)P. Nature 1998;394:432–3.
CrossRef Google scholar
[34]
Hammond GR, Machner MP, Balla T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol 2014;205:113–26.
CrossRef Google scholar
[35]
Dolinsky S, Haneburger I, Cichy A et al. The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect Immun 2014;82:4021–33.
CrossRef Google scholar
[36]
Weber S, Wagner M, Hilbi H. Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection. mBio 2014;5:e00839–13.
CrossRef Google scholar
[37]
Zewe JP, Wills RC, Sangappa S et al. SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. Elife 2018;7:e35588.
CrossRef Google scholar
[38]
Varnai P, Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 1998;143:501–10.
CrossRef Google scholar
[39]
Wills RC, Goulden BD, Hammond GRV. Genetically encoded lipid biosensors. Mol Biol Cell 2018;29:1526–32.
CrossRef Google scholar
[40]
Dickson EJ, Hille B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 2019;476:1–23.
CrossRef Google scholar
[41]
Santagata S, Boggon TJ, Baird CL et al. G-protein signaling through tubby proteins. Science 2001;292:2041–50.
CrossRef Google scholar
[42]
Liu SL, Wang ZG, Hu Y et al. Quantitative lipid imaging reveals a new signaling function of phosphatidylinositol-3,4-bisphophate: isoform- and site-specific activation of Akt. Mol Cell 2018;71:1092–104.e5.
CrossRef Google scholar
[43]
Oikawa T, Itoh T, Takenawa T. Sequential signals toward podosome formation in NIH-src cells. J Cell Biol 2008;182:157–69.
CrossRef Google scholar
[44]
Goulden BD, Pacheco J, Dull A et al. A high-avidity biosensor reveals plasma membrane PI(3,4)P2 is predominantly a class I PI3K signaling product. J Cell Biol 2019;218:1066–79.
CrossRef Google scholar
[45]
Kimber WA, Trinkle-Mulcahy L, Cheung PC et al. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J 2002;361:525–36.
CrossRef Google scholar
[46]
Wills RC, Pacheco J, Hammond GRV. Quantification of genetically encoded lipid biosensors. Methods Mol Biol 2021;2251:55–72.
CrossRef Google scholar
[47]
Varnai P, Rother KI, Balla T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 1999;274:10983–9.
CrossRef Google scholar
[48]
Frech M, Andjelkovic M, Ingley E et al. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influenceon kinase activity. J Biol Chem 1997;272:8474–81.
CrossRef Google scholar
[49]
Gray A, Van Der Kaay J, Downes CP. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J 1999;344 Pt 3:929–36.
CrossRef Google scholar
[50]
Gozani O, Karuman P, Jones DR et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 2003;114:99–111.
CrossRef Google scholar
[51]
Pendaries C, Tronchere H, Arbibe L et al. PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 2006;25:1024–34.
CrossRef Google scholar
[52]
Hammond GR, Takasuga S, Sasaki T et al. The ML1Nx2 phosphatidylinositol 3,5-bisphosphate probe shows poor selectivity incells. PLoS One 2015;10:e0139957.
CrossRef Google scholar
[53]
Li X, Wang X, Zhang X et al. Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics. Proc Natl Acad SciU S A 2013;110:21165–70.
CrossRef Google scholar
[54]
Vines JH, Maib H, Buckley CM et al. A PI(3,5)P2 reporter reveals PIKfyve activity and dynamics on macropinosomes and phagosomes. J Cell Biol 2023;222:e202209077.
CrossRef Google scholar
[55]
Sun J, Song S, Singaram I et al. PI(3,5)P2 controls the signaling activity of Class I PI3K. bioRxiv 2023:2023.01.25.525550.
[56]
Pemberton JG, Kim YJ, Humpolickova J et al. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J Cell Biol 2020;219:e201906130.
CrossRef Google scholar
[57]
Zewe JP, Miller AM, Sangappa S et al. Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane. J Cell Biol 2020;219:e201906127.
CrossRef Google scholar
[58]
Fairn GD, Schieber NL, Ariotti N et al. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J Cell Biol 2011;194:257–75.
CrossRef Google scholar
[59]
Uchida Y, Hasegawa J, Chinnapen D et al. Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes. Proc Natl Acad Sci USA 2011;108:15846–51.
CrossRef Google scholar
[60]
Chung J, Torta F, Masai K et al. Intracellular transport. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 2015;349:428–32.
CrossRef Google scholar
[61]
Zhang F, Wang Z, Lu M et al. Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Mol Cell Biol 2014;34:84–95.
CrossRef Google scholar
[62]
Hammond GR, Balla T. Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim Biophys Acta 2015;1851:746–58.
CrossRef Google scholar
[63]
Irino Y, Tokuda E, Hasegawa J et al. Quantification and visualization of phosphoinositides by quantum dot-labeled specific binding-domain probes. J Lipid Res 2012;53:810–9.
CrossRef Google scholar
[64]
Platre MP, Jaillais Y. Guidelines for the use of protein domains in acidic phospholipid imaging. Methods Mol Biol 2016;1376:175–94.
CrossRef Google scholar
[65]
He K, Marsland R III, Upadhyayula S et al. Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature 2017;552:410–4.
CrossRef Google scholar
[66]
Khuong TM, Habets RL, Kuenen S et al. Synaptic PI(3,4,5)P3 is required for Syntaxin1A clustering and neurotransmitter release. Neuron 2013;77:1097–108.
CrossRef Google scholar
[67]
Ding Y, Li J, Enterina JR et al. Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange. NatMethods 2015;12:195–8.
CrossRef Google scholar
[68]
van der Wal J, Habets R, Varnai P et al. Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J Biol Chem 2001;276:15337–44.
CrossRef Google scholar
[69]
Sato M, Ueda Y, Takagi T et al. Production of PtdInsP3 atendomembranes is triggered by receptor endocytosis. Nat CellBiol 2003;5:1016–22.
CrossRef Google scholar
[70]
Toth JT, Gulyas G, Hunyady L et al. Development of nonspecific BRET-based biosensors to monitor plasma membrane inositol lipids in living cells. Methods Mol Biol 2019;1949:23–34.
CrossRef Google scholar
[71]
Toth JT, Gulyas G, Toth DJ et al. BRET-monitoring of the dynamicchanges of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation. Biochim Biophys Acta 2016;1861:177–87.
CrossRef Google scholar
[72]
Sohn M, Toth DJ, Balla T. Monitoring non-vesicular transport of phosphatidylserine and phosphatidylinositol 4-phosphate in intact cells by BRET Analysis. Methods Mol Biol 2019;1949:13–22.
CrossRef Google scholar
[73]
Yang L, Nasu Y, Hattori M et al. Bioluminescent probes to analyze ligand-induced phosphatidylinositol 3,4,5-trisphosphate production with split luciferase complementation. Anal Chem 2013;85:11352–9.
CrossRef Google scholar
[74]
Yoon Y, Lee PJ, Kurilova S et al. In situ quantitative imaging ofcellular lipids using molecular sensors. Nat Chem 2011;3:868–74.
CrossRef Google scholar
[75]
Sharma A, Sun J, Singaram I et al. Photostable and orthogonalsolvatochromic fluorophores for simultaneous in situ quantification of multiple cellular signaling molecules. ACS Chem Biol 2020;15:1913–20.
CrossRef Google scholar
[76]
Liu SL, Sheng R, O’Connor MJ et al. Simultaneous in situ quantification of two cellular lipid pools using orthogonal fluorescentsensors. Angew Chem Int Ed Engl 2014;53:14387–91.
CrossRef Google scholar
[77]
Garcia P, Gupta R, Shah S et al. The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 1995;34:16228–34.
CrossRef Google scholar
[78]
Lemmon MA, Ferguson KM, O’Brien R et al. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 1995;92:10472–6.
CrossRef Google scholar
[79]
Stauffer TP, Ahn S, Meyer T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 1998;8:343–6.
CrossRef Google scholar
[80]
Idevall-Hagren O, Dickson EJ, Hille B et al. Optogenetic control of phosphoinositide metabolism. Proc Natl Acad Sci USA 2012;109:E2316–23.
CrossRef Google scholar
[81]
Stefan CJ, Audhya A, Emr SD. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell 2002;13:542–57.
CrossRef Google scholar
[82]
Shaner NC, Lambert GG, Chammas A et al. A bright monomericgreen fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 2013;10:407–9.
CrossRef Google scholar
[83]
Goedhart J, Gadella TWJ Jr. Breaking up the StayGold dimer yields three photostable monomers. Nat Methods 2024;21:558–9.
CrossRef Google scholar
[84]
Hirano M, Ando R, Shimozono S et al. A highly photostable and bright green fluorescent protein. Nat Biotechnol 2022;40:1132–42.
CrossRef Google scholar
[85]
Ando R, Shimozono S, Ago H et al. StayGold variants for molecular fusion and membrane-targeting applications. Nat Methods 2024;21:648–56.
CrossRef Google scholar
[86]
Zhang H, Lesnov GD, Subach OM et al. Bright and stable monomeric green fluorescent protein derived from StayGold. NatMethods 2024;21:657–65.
CrossRef Google scholar
[87]
Ivorra-Molla E, Akhuli D, McAndrew MBL et al. A monomericStayGold fluorescent protein. Nat Biotechnol 2023.
CrossRef Google scholar
[88]
Bindels DS, Haarbosch L, van Weeren L et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 2017;14:53–6.
CrossRef Google scholar
[89]
Mukherjee S, Hung ST, Douglas N et al. Engineering of a brighter variant of the FusionRed fluorescent protein using lifetime flow cytometry and structure-guided mutations. Biochemistry 2020;59:3669–82.
CrossRef Google scholar
[90]
Gadella TWJ Jr, van Weeren L, Stouthamer J et al. mScarlet3: a brilliant and fast-maturing red fluorescent protein. Nat Methods 2023;20:541–5.
CrossRef Google scholar
[91]
Los GV, Encell LP, McDougall MG et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 2008;3:373–82.
CrossRef Google scholar
[92]
Keppler A, Gendreizig S, Gronemeyer T et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 2003;21:86–9.
CrossRef Google scholar
[93]
Grimm JB, Brown TA, English BP et al. Synthesis of Janelia Fluor HaloTag and SNAP-tag ligands and their use in cellular imaging experiments. Methods Mol Biol 2017;1663:179–88.
CrossRef Google scholar
[94]
Grimm JB, Muthusamy AK, Liang Y et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat Methods 2017;14:987–94.
CrossRef Google scholar
[95]
Carlton JG, Cullen PJ. Coincidence detection in phosphoinositide signaling. Trends Cell Biol 2005;15:540–7.
CrossRef Google scholar
[96]
Lemmon MA. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 2008;9:99–111.
CrossRef Google scholar
[97]
Yu JW, Mendrola JM, Audhya A et al. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell 2004;13:677–88.
CrossRef Google scholar
[98]
He K, Song E, Upadhyayula S et al. Dynamics of Auxilin 1 and GAK in clathrin-mediated traffic. J Cell Biol 2020;219:e201908142.
CrossRef Google scholar
[99]
Romei MG, Boxer SG. Split green fluorescent proteins: scope, limitations, and outlook. Annu Rev Biophys 2019;48:19–44.
CrossRef Google scholar
[100]
Tamura R, Jiang F, Xie J et al. Multiplexed labeling of cellular proteins with split fluorescent protein tags. Commun Biol 2021;4:257.
CrossRef Google scholar
[101]
Feng S, Varshney A, Coto Villa D et al. Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. Commun Biol 2019;2:344.
CrossRef Google scholar
[102]
Zhou S, Feng S, Brown D et al. Improved yellow-green split fluorescent proteins for protein labeling and signal amplification. PLoS One 2020;15:e0242592.
CrossRef Google scholar
[103]
Shao S, Zhang H, Zeng Y et al. TagBiFC technique allows long-term single-molecule tracking of protein-protein interactions in living cells. Commun Biol 2021;4:378.
CrossRef Google scholar
[104]
Drin G. MapPIng PI inside cells brings new light to polyphosphoinositide biology. J Cell Biol 2020;219:e202001185.
CrossRef Google scholar
[105]
Alford SC, Abdelfattah AS, Ding Y et al. A fluorogenic red fluorescent protein heterodimer. Chem Biol 2012;19:353–60.
CrossRef Google scholar
[106]
Alford SC, Ding Y, Simmen T et al. Dimerization-dependent green and yellow fluorescent proteins. ACS Synth Biol 2012;1:569–75.
CrossRef Google scholar
[107]
Algar WR, Hildebrandt N, Vogel SS et al. FRET as a biomolecular research tool—understanding its potential while avoiding pitfalls. Nat Methods 2019;16:815–29.
CrossRef Google scholar
[108]
Bajar BT, Wang ES, Zhang S et al. A guide to fluorescent protein FRET pairs. Sensors (Basel) 2016;16:1488.
CrossRef Google scholar
[109]
Lerner E, Cordes T, Ingargiola A et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 2018;359:eaan1133.
CrossRef Google scholar
[110]
Liu L, He F, Yu Y et al. Application of FRET biosensors in mechanobiology and mechanopharmacological screening. Front Bioeng Biotechnol 2020;8:595497.
CrossRef Google scholar
[111]
Asher WB, Geggier P, Holsey MD et al. Single-molecule FRET imaging of GPCR dimers in living cells. Nat Methods 2021;18:397–405.
CrossRef Google scholar
[112]
McCullock TW, MacLean DM, Kammermeier PJ. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen. PLoS One 2020;15:e0219886.
CrossRef Google scholar
[113]
Hertel F, Switalski A, Mintert-Jancke E et al. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells. PLoS One 2011;6:e20855.
CrossRef Google scholar
[114]
Nishioka T, Aoki K, Hikake K et al. Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells. Mol Biol Cell 2008;19:4213–23.
CrossRef Google scholar
[115]
Kunida K, Matsuda M, Aoki K. FRET imaging and statistical signal processing reveal positive and negative feedback loops regulating the morphology of randomly migrating HT-1080 cells. J Cell Sci 2012;125:2381–92.
[116]
Pfleger KD, Eidne KA. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 2006;3:165–74.
CrossRef Google scholar
[117]
Kuo MS, Auriau J, Pierre-Eugene C et al. Development of a human breast-cancer derived cell line stably expressing a bioluminescence resonance energy transfer (BRET)-based phosphatidyl inositol-3 phosphate (PIP3) biosensor. PLoS One 2014;9:e92737.
CrossRef Google scholar
[118]
Liu SL, Sheng R, Jung JH et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. NatChem Biol 2017;13:268–74.
CrossRef Google scholar
[119]
Courtney KC, Fung KY, Maxfield FR et al. Comment on ‘Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol’. Elife 2018;7:e38493.
CrossRef Google scholar
[120]
Varnai P, Thyagarajan B, Rohacs T et al. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J Cell Biol 2006;175:377–82.
CrossRef Google scholar
[121]
Pacheco J, Wills RC, Hammond GRV. Induced dimerization toolsto deplete specific phosphatidylinositol phosphates. Methods Mol Biol 2021;2251:105–20.
CrossRef Google scholar
[122]
Kennedy MJ, Hughes RM, Peteya LA et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 2010;7:973–5.
CrossRef Google scholar
[123]
Hammond GR, Sim Y, Lagnado L et al. Reversible binding and rapid diffusion of proteins in complex with inositol lipids serves to coordinate free movement with spatial information. J Cell Biol 2009;184:297–308.
CrossRef Google scholar
[124]
Golebiewska U, Nyako M, Woturski W et al. Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the plasma membrane of cells. Mol Biol Cell 2008;19:1663–9.
CrossRef Google scholar
[125]
Pacheco J, Cassidy AC, Zewe JP et al. PI(4,5)P2 diffuses freely in the plasma membrane even within high-density effector protein complexes. J Cell Biol 2023;222:e202204099.
CrossRef Google scholar
[126]
Chen BC, Legant WR, Wang K et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 2014;346:1257998.
CrossRef Google scholar
[127]
Aguet F, Upadhyayula S, Gaudin R et al. Membrane dynamics ofdividing cells imaged by lattice light-sheet microscopy. Mol BiolCell 2016;27:3418–35.
CrossRef Google scholar
[128]
Liu G, Ruan X, Milkie DE et al. Characterization, comparison, and optimization of lattice light sheets. Sci Adv 2023;9:eade6623.
CrossRef Google scholar
[129]
Li N, Zhao R, Sun YH et al. Single-molecule imaging and tracking of molecular dynamics in living cells. Natl Sci Rev 2017;4:739–60.
CrossRef Google scholar
[130]
Kay JG, Koivusalo M, Ma X et al. Phosphatidylserine dynamics in cellular membranes. Mol Biol Cell 2012;23:2198–212.
CrossRef Google scholar
[131]
Yu J. Single-molecule studies in live cells. Annu Rev Phys Chem 2016;67:565–85.
CrossRef Google scholar
[132]
Liu Z, Lavis LD, Betzig E. Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell 2015;58:644–59.
CrossRef Google scholar
[133]
Thompson NL, Wang X, Navaratnarajah P. Total internal reflection with fluorescence correlation spectroscopy: applications to substrate-supported planar membranes. J Struct Biol 2009;168:95–106.
CrossRef Google scholar
[134]
Tokunaga M, Imamoto N, Sakata-Sogawa K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 2008;5:159–61.
CrossRef Google scholar
[135]
Luo F, Qin G, Xia T et al. Single-molecule imaging of protein interactions and dynamics. Annu Rev Anal Chem (Palo Alto Calif) 2020;13:337–61.
CrossRef Google scholar
[136]
Yasui M, Hiroshima M, Kozuka J et al. Automated single-molecule imaging in living cells. Nat Commun 2018;9:3061.
CrossRef Google scholar
[137]
Liu H, Dong P, Ioannou MS et al. Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling. Proc Natl Acad Sci USA 2018;115:343–8.
CrossRef Google scholar
[138]
Mashanov GI, Tacon D, Peckham M et al. The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts. J Biol Chem 2004;279:15274–80.
CrossRef Google scholar
[139]
Matsuoka S, Iijima M, Watanabe TM et al. Single-molecule analysis of chemoattractant-stimulated membrane recruitment of a PH-domain-containing protein. J Cell Sci 2006;119:1071–9.
CrossRef Google scholar
[140]
Grimm JB, Xie L, Casler JC et al. A general method to improve fluorophores using deuterated auxochromes. JACS Au 2021;1:690–6.
CrossRef Google scholar
[141]
Manley S, Gillette JM, Patterson GH et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 2008;5:155–7.
CrossRef Google scholar
[142]
Ishitsuka Y, Nienhaus K, Nienhaus GU. Photoactivatable fluorescent proteins for super-resolution microscopy. Methods Mol Biol 2014;1148:239–60.
CrossRef Google scholar
[143]
Antonescu CN, Aguet F, Danuser G et al. Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol Biol Cell 2011;22:2588–600.
CrossRef Google scholar
[144]
Cocucci E, Aguet F, Boulant S et al. The first five seconds in the life of a clathrin-coated pit. Cell 2012;150:495–507.
CrossRef Google scholar
[145]
Daste F, Walrant A, Holst MR et al. Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature. J Cell Biol 2017;216:3745–65.
CrossRef Google scholar
[146]
Marshall AJ, Krahn AK, Ma K et al. TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: sustained plasma membrane recruitment triggered by the B-cell antigen receptor. Mol Cell Biol 2002;22:5479–91.
CrossRef Google scholar
[147]
Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic 2009;10:364–71.
CrossRef Google scholar
[148]
Maekawa M, Terasaka S, Mochizuki Y et al. Sequential break-down of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis. Proc Natl Acad Sci USA 2014;111:E978–87.
CrossRef Google scholar
[149]
Quinn SE, Huang L, Kerkvliet JG et al. The structural dynamics of macropinosome formation and PI3-kinase-mediated sealing revealed by lattice light sheet microscopy. Nat Commun 2021;12:4838.
CrossRef Google scholar
[150]
Quijano-Rubio A, Yeh HW, Park J et al. De novo design of modular and tunable protein biosensors. Nature 2021;591:482–7.
CrossRef Google scholar
[151]
Tenner B, Zhang JZ, Kwon Y et al. FluoSTEPs: fluorescent biosensors for monitoring compartmentalized signaling within endogenous microdomains. Sci Adv 2021;7:eabe4091.
CrossRef Google scholar
[152]
Yang JM, Chi WY, Liang J et al. Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell 2021;184:6193–206.e14.
CrossRef Google scholar
[153]
Donia T, Jyoti B, Suizu F et al. Identification of RNA aptamer which specifically interacts with PtdIns(3)P. Biochem Biophys ResCommun 2019;517:146–54.
CrossRef Google scholar
[154]
Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev 2013;113:2842–62.
CrossRef Google scholar
[155]
Balzarotti F, Eilers Y, Gwosch KC et al. Nanometer resolutionimaging and tracking of fluorescent molecules with minimal photon fluxes. Science 2017;355:606–12.
CrossRef Google scholar
[156]
Schmidt R, Weihs T, Wurm CA et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat Commun 2021;12:1478.
CrossRef Google scholar
[157]
Liu TL, Upadhyayula S, Milkie DE et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 2018;360:eaaq1392.
CrossRef Google scholar
[158]
Ouyang W, Aristov A, Lelek M et al. Deep learning massively accelerates super-resolution localization microscopy. Nat Biotechnol 2018;36:460–8.
CrossRef Google scholar
[159]
Xu J, Qin G, Luo F et al. Automated stoichiometry analysis of single-molecule fluorescence imaging traces via deep learning. J Am Chem Soc 2019;141:6976–85.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(1999 KB)

Accesses

Citations

Detail

Sections
Recommended

/