Many experimental investigations have previously been performed and recently done on different shipbuilding structural steels where the specimens size and crack depth/specimen width (a/W) were varied. A series of interesting results have been gained. It is worthwhile to have a review on the effect of a/W ratio on fracture toughness, and further theoretical analysis is necessary. In this paper, experimental work in elasticplastic fracture mechanics (EPFM) was discussed. Tests had been carried out on 10 kinds of strength steels. Results showed that J i and δ1 values increased with decreasing a/W when a/W<0.3 for three-point bend specimens and that shallow crack specimens which have less constrained flow field give markedly higher values of toughness than deeply notched specimens. However, for a/W>0.3, the toughness was found to be independent of a/W. Slip line field analysis shows that for shallow cracks, the hydrostatic stress is lower than that from standard deeply cracked bend specimen which develops a high level of crack tip constraint, provides a lower bound estimate of toughness, and will ensure an unduly conservative approach when applied to structure defects especially if initiation values of COD/J-integral are used.
The max collision force of ship-bridge collision is one of the most important references for bridge design. By means of nonlinear digital simulation method, the collision forces of the collisions between rigid bridge pier and ship bow were calculated out for four different ships, whose tonnages are 5 000, 10 000, 50 000 and 60 000 DWT respectively. Curves of collision force-penetration and absorbed energy-penetration are obtained, and the data of the max loads are then summarized. On the basis of these curves and data, a set of curves describing the relationships between max collision forces and tonnages of the ships are successfully presented, by which the max collision forces of the ships-bridge with different tonnages and in different velocities can be estimated easily and reliably.
In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate coupled hydrodynamic effects by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems. In order to improve efficiency of calculation, the effect of history time has been discussed, and an improved method is presented. Moreover, the effect of lateral separation distance is also discussed in detail. The technique developed here may serve as a more rigorous tool to analyze the related transient problems of two ships doing underway replenishment in waves.
The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are conducted and reliable foundation for design and manufacture of marine gas turbine inlet system of high performance is provided. Numerical simulations and experiments of two inlet system models of gas turbine are conducted with satisfactory results and are of significance to the actual application of the inlet system.
Combined power plant is widely used in large or medium surface vessel for its predominant performance. It is important to research on using combined power plant as electrical propulsion prime mover for developing the electric propulsion warship. This paper, designs a multi-module experiment-rig and introduces its composition, working principle and disposition scheme, and carried out the dynamic characteristic experiment of the GTD350 gas turbine.
The work condition of nuclear power plant (NPP) is very bad, which makes it has faults easily. In order to diagnose the faults real time, the fusion diagnosis system is built. The data fusion fault diagnosis system adopts data fusion method and divides the fault diagnosis into three levels, which are data fusion level, feature level and decision level. The feature level uses three parallel neural networks whose structures are the same. The purpose of using neural networks is mainly to get basic probability assignment (BPA) of D-S evidence theory, and the neural networks in feature level are used for local diagnosis. D-S evidence theory is adopted to integrate the local diagnosis results in decision level. The reactor coolant system is the study object and we choose 2# steam generator U-tubes break of the reactor coolant system as a diagnostic example. The experiments prove that the fusion diagnosis system can satisfy the fault diagnosis requirement of complicated system, and verify that the fusion fault diagnosis system can realize the fault diagnosis of NPP on line timely.
The fuzzy logic and neural networks are combined in this paper, setting up the fuzzy neural network (FNN); meanwhile, the distinct differences and connections between the fuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN are introduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to the nuclear power plant, and the intelligence fault diagnostic system of the nuclear power plant is built based on the FNN. The fault symptoms and the possibility of the inverted U-tube break accident of steam generator are discussed. In order to test the system’s validity, the inverted U-tube break accident of steam generator is used as an example and many simulation experiments are performed. The test result shows that the FNN can identify the fault.
A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor, therefor, the study of pressurizer’s pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a presurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.
A new generation conical spray system for conventional diesel engines or premixed combustion diesel engines is introduced. By means of oriented impingement method, flexible spray penetration in design is realized. High-speed photograph was used to investigate the spatial distribution characteristics of the new spray for cases of different impingement angles and needle valve opening pressures. The results show that, by applying spray impingement orientation, fuel jets spread along the cone surface as shape of sectors, so the dispersion of jets is increased obviously. Changing on impingement angle leads to variation of penetration, which is critical in homogeneous mixture preparation. Due to the flexibility of spray penetration in design, the spray impingement on liner is avoided in a great extent. The results also indicate that higher needle valve opening pressure results in longer penetration and larger spray angle after impingement. Combustion characteristics of the impinged conical spray were studied in the 1135 type diesel engine. The new impinged conical spray system work smoothly in full load range with better fuel economy and lower emissions of NO x and soot than the original test engine.
In this paper, the principle of H ∞ filtering is discussed and H ∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems (SINS). The error model of SINS is derived. By utilizing constructed H ∞ filter, the filtering calculation to that system has been conducted. The simulation results of the misalignment angle are given under the condition of unknown noises. The results show that the process of alignment with H ∞ filter is much faster and with excellent robustness.
In this paper, the vibration and sound radiation of the underwater complex shell-structure which is the cylindrical shell with hemi-spherical shell on the ends are studied by statistical energy analysis (SEA). The whole shell-structure is divided into the four subsystems, and the SEA physical model and power flow balance equations among these subsystems are established. The similitude relations of input power, coupling loss factor and modal density of the subsystems between the complex shell-structure and its scaled-down model are analyzed. According to the similitude theory and power flow balance equations, when the immerged shell-structures are excited, the similar relations of spatially averaged vibration response and underwater radiating sound power are established for the complex shell-structure and its scaled-down model.
An experimental study and computer simulation on non-equilibrium grain-boundary segregation kinetics and the critical time for phosphorus in 12 CrlMoV steel (which is used in steam pipeline of ships) are put forward in this paper. The segregation level of phosphorus with solution temperature 1050°C at the isothermal holding temperature of 540°C, have been measured at grain-boundaries. A non-equilibrium grain-boundary segregation kinetics curve of phosphorus is given. The critical time for phosphorus non-equilibrium grain-boundary segregation is about 500 h at 540°C for the experimental steel. When the holding time is longer than 1500 h, non-equilibrium segregation disappears and the level of segregation reaches full equilibrium. The simulation using the kinetic equations of non-equilibrium grain-boundary segregation is in good accordance with the experimental observation for phosphorus in steel 12Cr1MoV. The non-equilibrium grain-boundary segregation kinetic model is therefore proved.
In the conceptual stage the function design process is realized by the computer aided application. After surveying on the function specification methods and the function modeling, a computer aided function design environment is analyzed. Subsequently based on a module library and principle catalogue, a solution finding process as a part of conceptual design is proposed for a creative design. In addition, a search algorithm to find the solution of adaptable function structure is also discussed. The concepts proposed in this paper can support the subsequent design stages, especially simulation for checking the function structure defects.