The Role of Post-Earthquake Fluid Pressure in Driving the 2021 Thessaly (Greece) Aftershock Sequence

Xiaoge Liu , Lei Xie , Ao Zheng , Yong Zheng , Thanushika Gunatilake , Jiuyuan Yang , Lijia He , Athanassios Ganas

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (6) : 2836 -2841.

PDF
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (6) :2836 -2841. DOI: 10.1007/s12583-025-2041-0
Letter
letter

The Role of Post-Earthquake Fluid Pressure in Driving the 2021 Thessaly (Greece) Aftershock Sequence

Author information +
History +
PDF

Cite this article

Download citation ▾
Xiaoge Liu, Lei Xie, Ao Zheng, Yong Zheng, Thanushika Gunatilake, Jiuyuan Yang, Lijia He, Athanassios Ganas. The Role of Post-Earthquake Fluid Pressure in Driving the 2021 Thessaly (Greece) Aftershock Sequence. Journal of Earth Science, 2025, 36(6): 2836-2841 DOI:10.1007/s12583-025-2041-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albano M, Barba S, Saroli M, et al. . Aftershock Rate and Pore Fluid Diffusion: Insights from the Amatrice-Visso-Norcia (Italy) 2016 Seismic Sequence. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 995-1015.

[2]

Antonioli A, Piccinini D, Chiaraluce L, et al. . Fluid Flow and Seismicity Pattern: Evidence from the 1997 Umbria-Marche (Central Italy) Seismic Sequence. Geophysical Research Letters, 2005, 32(10): 2004GL022256.

[3]

Bai C Y, Xu W B, Zhao L, et al. . 3D Coseismic Deformation and Fault Slip Model of the 2023 Kahramanmaras Earthquake Sequence Constrained by GPS, ALOS-2 and Sentinel-1 Data. Journal of Earth Science, 2025, 36(2): 812-822.

[4]

Cheng Y F, Ben-Zion Y. Transient Brittle-Ductile Transition Depth Induced by Moderate-Large Earthquakes in Southern and Baja California. Geophysical Research Letters, 2019, 46(20): 11109-11117.

[5]

De Novellis V, Reale D, Adinolfi G M, et al. . Geodetic Model of the March 2021 Thessaly Seismic Sequence Inferred from Seismological and InSAR Data. Remote Sensing, 2021, 13(17): 3410.

[6]

Gunatilake T, Miller S A. Spatio-Temporal Complexity of Aftershocks in the Apennines Controlled by Permeability Dynamics and Decarbonization. Journal of Geophysical Research: Solid Earth, 2022, 127(6): e2022JB024154.

[7]

Hardebeck J L, Nazareth J J, Hauksson E. The Static Stress Change Triggering Model: Constraints from Two Southern California Aftershock Sequences. Journal of Geophysical Research: Solid Earth, 1998, 103(B10): 24427-24437.

[8]

Hu X N, Yu C, Liu Z J, et al. . Ongoing Compressional Tectonism and Regional Seismic Hazard Revealed by the 2023 Mw 6.1 Jishishan Earthquake. Journal of Earth Science, 2025, 36(1): 275-290.

[9]

Kassaras I, Kapetanidis V, Ganas A, et al. . Seismotectonic Analysis of the 2021 Damasi-Tyrnavos (Thessaly, Central Greece) Earthquake Sequence and Implications on the Stress Field Rotations. Journal of Geodynamics, 2022, 150: 101898.

[10]

Malagnini L, Lucente F P, De Gori P, et al. . Control of Pore Fluid Pressure Diffusion on Fault Failure Mode: Insights from the 2009 L’Aquila Seismic Sequence. Journal of Geophysical Research: Solid Earth, 2012, 117(B5): 2011JB008911.

[11]

Michas G, Pavlou K, Avgerinou S E, et al. . Aftershock Patterns of the 2021 Mw 6.3 Northern Thessaly (Greece) Earthquake. Journal of Seismology, 2022, 26(2): 201-225.

[12]

Miller S A, Collettini C, Chiaraluce L, et al. . Aftershocks Driven by a High-Pressure CO2 Source at Depth. Nature, 2004, 427(6976): 724-727.

[13]

Napolitano F, Amoroso O, De Novellis V, et al. . Seismic Imaging of Fluid-Filled Inherited Structures of the Northern Thessaly (Greece) Seismic Gap. Frontiers in Earth Science, 2023, 11: 1176348.

[14]

Perfettini H, Avouac J P. Postseismic Relaxation Driven by Brittle Creep: A Possible Mechanism to Reconcile Geodetic Measurements and the Decay Rate of Aftershocks, Application to the Chi-Chi Earthquake, Taiwan. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): 2003JB002488.

[15]

Piombo A, Martinelli G, Dragoni M. Post-Seismic Fluid Flow and Coulomb Stress Changes in a Poroelastic Medium. Geophysical Journal International, 2005, 162(2): 507-515.

[16]

Schoenball M, Ellsworth W L. A Systematic Assessment of the Spatiotemporal Evolution of Fault Activation through Induced Seismicity in Oklahoma and Southern Kansas. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10189-10206

[17]

Sibson R H. Crustal Stress, Faulting and Fluid Flow. Geological Society, London, Special Publications, 1994, 78(1): 69-84.

[18]

Stein R S. The Role of Stress Transfer in Earthquake Occurrence. Nature, 1999, 402(6762): 605-609.

[19]

Toda S, Stein R S, Beroza G C, et al. . Aftershocks Halted by Static Stress Shadows. Nature Geoscience, 2012, 5(6): 410-413.

[20]

Townend J, Zoback M D. How Faulting Keeps the Crust Strong. Geology, 2000, 28(5): 399.

[21]

Tung S, Masterlark T. Delayed Poroelastic Triggering of the 2016 October Visso Earthquake by the August Amatrice Earthquake, Italy. Geophysical Research Letters, 2018, 45(5): 2221-2229.

[22]

Valerio E, Tizzani P, Carminati E, et al. . Longer Aftershocks Duration in Extensional Tectonic Settings. Scientific Reports, 2017, 7: 16403

[23]

Wiemer S. A Software Package to Analyze Seismicity: ZMAP. Seismological Research Letters, 2001, 72(3): 373-382.

[24]

Yang J Y, Xu C J, Wen Y M, et al. . Complex Coseismic and Postseismic Faulting during the 2021 Northern Thessaly (Greece) Earthquake Sequence Illuminated by InSAR Observations. Geophysical Research Letters, 2022, 49(8): e2022GL098545.

[25]

Zhao D P, Toyokuni G, Kim Y. Changbai Intraplate Volcanism and Big Mantle Wedge. Physics of the Earth and Planetary Interiors, 2025, 367: 107425.

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

/