Journal home Browse Most accessed

Most accessed

  • Select all
  • Hyuntaik Oh, Ho-Jeong Shin
    Journal of Earth Science, 2016, 27(1): 123-129. https://doi.org/10.1007/s12583-016-0622-7

    When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project (PMIP) models. The reconstructed winter (summer) surface air temperature at 6 kyr before present was 0.85 ºC (0.21 ºC) lower (higher) than the present day over Asia, 60ºE–150ºE, 10ºN–60ºN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1 larger than present day, respectively. The Group B climate, which means the dry climates based on Köppen climate classification, at 6 kyr before present decreased 17% compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.

  • Mingming Luo, Zhihua Chen, Dechao Yin, Hamza Jakada, He Huang, Hong Zhou, Tao Wang
    Journal of Earth Science, 2016, 27(1): 15-21. https://doi.org/10.1007/s12583-016-0624-5

    Xiangxi River Basin, located in western Hubei Province in central China, is a karst ridge-trough area with an inhomogeneous and complicated distribution of water resources. This paper compares the characteristics of surface and subsurface floods in this karst basin, utilizing a one-parameter Darcian model and the traditional exponential model. The observed hydrographs and inferred water components are strikingly similar for surface and subsurface floods. The Darcian model and the exponential model are based on different views of the flood generation process, with the former fitting the entire hydrograph with a single time constant, and the latter fitting only the recession limb with multiple time constants. Due to the anisotropy and heterogeneity of karst media, a combination of physical and chemical techniques including the use of 3S (remote sensing, geographical information system, global positioning system) method is proposed for an enhanced hydrological investigation to assess and characterize karst water resources in mountainous areas.

  • Tao Wu, Long Xiao, Changqian Ma
    Journal of Earth Science, 2016, 27(3): 461-473. https://doi.org/10.1007/s12583-016-0675-5

    This paper reports geochronological data of detrital zircons from the country rock and sedimentary xenoliths of the Cilincuo pluton (79±0.7 Ma) in the southern Yidun arc belt and the inherited zircons from the Late Triassic granites in the eastern Yidun arc belt, eastern Tibet Plateau. Detrital zircons ages from the sedimentary xenoliths have four prominent peaks at 2.5–2.4 Ga, 1.9–1.8 Ga, 480–400 Ma, and 350–300 Ma, whereas those from the country rock exhibit another four prominent peaks at 1.9–1.8 Ga, 850–700 Ma, 480–400 Ma, and 300–250 Ma. Based on comparison with age data from previous studies, we suggest that the sedimentary xenoliths are from the Lanashan Formation and the major provenance of them is Qiangtang Block, Zhongza massif and South China Block, whereas the country rock belongs to the Lamaya Formation and the major provenance of them is similar to those of the neighbouring Songpan-Garzê terrane. In addition, the inherited zircons from the Late Triassic granites in the eastern Yidun arc belts have a prominent Neoproterozoic age population (900–700 Ma), which suggests that there is an old basement with west Yangtze Craton affinity beneath the Triassic sediments. Combining with previous studies, we propose that the provenances of the formations vary from the Lanashan Formation to the Lamaya Formation which may indicate a record of the final closure of the Garzê-Litang Ocean.

  • Yang Peng, Yongbo Peng, Xianguo Lang, Haoran Ma, Kangjun Huang, Fangbing Li, Bing Shen
    Journal of Earth Science, 2016, 27(2): 242-254. https://doi.org/10.1007/s12583-016-0694-4

    Global occurrences of Steptoean Positive Carbon Isotope Excursion (SPICE) during Late Cambrian recorded a significant perturbation in marine carbon cycle, and might have had profound impacts on the biological evolution. In previous studies, SPICE has been reported from the Jiangnan slope belt in South China. To evaluate the bathymetric extent of SPICE, we investigate the limestone samples from the upper Qingxi Formation in the Shaijiang Section in the Jiangnan Basin. Our results show the positive excursions for both carbonate carbon (δ13C) and organic carbon (δ13Corg) isotopes, as well as the concurrent positive shifts in sulfur isotopes of carbonate associated sulfate (CAS, δ34SCAS) and pyrite (δ34Spyrite), unequivocally indicating the presence of SPICE in the Jiangnan Basin. A 4‰ increase in δ13Ccarb of the Qingxi limestone implies the increase of the relative flux of organic carbon burial by a factor of two. Concurrent positive excursions in δ34SCAS and δ34Spyrite have been attributed to the enhanced pyrite burial in oceans with extremely low concentration and spatially heterogeneous isotopic composition of seawater sulfate. Here, we propose that the seawater sulfur isotopic heterogeneity can be generated by volatile organic sulfur compound (VOSC, such as methanethiol and dimethyl sulfide) formation in sulfidic continental margins that were widespread during SPICE. Emission of 32S-enriched VOSC in atmosphere, followed by lateral transportation and aerobic oxidation in atmosphere, and precipitation in open oceans result in a net flux of 32S from continental margins to open oceans, elevating δ34S of seawater sulfate in continental margins. A simple box model indicates that about 35% to 75% of seawater sulfate in continental margins needs to be transported to open oceans via VOSC formation.

  • Tianyu Zhao, Xin Qian, Qinglai Feng
    Journal of Earth Science, 2016, 27(3): 391-402. https://doi.org/10.1007/s12583-016-0671-y

    Zircon U-Pb dating, Lu-Hf isotopic and geochemical data for the Silurian rhyolites from the Loei fold belt are presented to constrain their petrogenesis and tectonic settings. The rhyolites give a weighted mean 206Pb/238U age of 423.7±2.7 Ma, and are characterized by high SiO2, Al2O3, K2O and low MnO, MgO and P2O5. All samples are enriched in LILEs (e.g., Ba, K, Pb) and LREEs and depleted in HFSEs (e.g., Nb, Ta, Ti) with obvious negative Eu-anomalies (dEu=0.56–0.63). The calc-alkaline rhyolites are typical arc-related rocks. The Loei rhyolites have high A/CNK ratios (1.19–1.34) and positive ε Hf(t) (4.03–5.38), which can be interpreted as partial melting of juvenile crustal materials followed by multistage melting and differentiation, similar to highly fractional I-type rocks. Combined with regional geological surveys, the Loei rhyolites should be formed in a volcanic arc environment and may be in contact with the Truong Son fold belt during the Early Paleozoic. Moreover, the Simao Block might be in contiguity with the Indochina Block during Silurian.

  • Fuhao Xiong, Changqian Ma, Hong’an Jiang, Hang Zhang
    Journal of Earth Science, 2016, 27(3): 474-490. https://doi.org/10.1007/s12583-016-0674-6

    This study reports zircon U-Pb and Hf isotopes and whole-rock elemental data for granodiorites from the East Kunlun orogen. The zircon U-Pb dating defines their crystallization age of 235 Ma. The rocks are characterized by high-K calc-alkaline, magnesian and metaluminous with (K2O+Na2O)=6.38 wt.%–7.01 wt.%, Mg#=42–50 [Mg#=100×molar Mg/(Mg+FeOT)], A/CNK=0.92–0.98, coupled with high ε Hf(t) values from -0.65 to -1.80. The rocks were derived from partial melting of a juvenile mafic crustal source within normal crust thickness. The juvenile lower crust was generated by mixing lithospheric mantle-derived melt (55%–60%) and supracrustal melt (40%–45%) during the seafloor subduction. Together with available data from the East Kunlun, it is proposed that the studied Middle Triassic granodiorites were formed in post-collisional extension setting, in which melting of the juvenile lower crust in response to the basaltic magma underplating resulted in the production of high-K granodioritic melts.

  • Andrew F. B. Tompson
    Journal of Earth Science, 2016, 27(1): 89-97. https://doi.org/10.1007/s12583-016-0630-7

    The Salton Sea is a terminal lake located in the deepest point of the topographically closed Salton Trough in southeastern California. It is currently the largest lake in area in the state. It was created by a flooding event along the Colorado River in 1905–1907, similar to the way historical floods over past centuries created ephemeral incarnations of ancient Lake Cahuilla in the same location. Its position at the center of today’s Imperial Valley, a hot and arid locale home to some of the most productive irrigated agricultural lands in the United States, has ensured its ongoing survival through a delicate balance between agricultural runoff, its principal form of input, and vast evaporation losses. Nevertheless, its parallel role as a recreational resource and important wildlife habitat, established over its first century of existence, is threatened by increasing salinity decreasing water quality, and reduced water allocations from the Colorado River that feeds the valley’s agriculture. The Salton Sea faces an increasingly uncertain future that will be influenced by reduced water imports from the Colorado River, demands for additional water sources to support farming and energy industries in the valley, and needs to stabilize the lake salinity, maintain recreational resources, and preserve what have become important ecosystems and wildlife habitats.

  • Jiafa Zhang, Jinlong Wang, Haodong Cui
    Journal of Earth Science, 2016, 27(1): 74-82. https://doi.org/10.1007/s12583-016-0623-6

    Asphaltic concrete core (ACC) dams are widely built in China. Many ACC dams perform well, but others have experienced significant leakage including the case in western China studied herein. A numerical model of saturated-unsaturated water flow was adapted to simulate the seepage through the dam. By comparing the normal and abnormal seepage fields under different conditions, the main causes for the actual abnormal seepage field were identified and attributed to a defect in the ACC and an unintended, low permeability layer (LPL) in the transition zone (TZ) and the downstream dam shell. These conclusions are consistent with the situation and performance of the dam. Inadequate ACC construction processes might have caused defects in the ACC. An abrupt change of the ACC thickness probably induced stress concentrations and caused the ACC to fail. Material sources for the TZ and dam shell were complex and varied from specifications, and soil gradation for the TZ was inadequately controlled. In particular, tests show that the permeability varies over large ranges in these two parts of the dam. An unexpected LPL probably exists in both areas, and extends continuously.

  • Haowei Sun, Yinqi Li, Zilong Li, Siyuan Zou, Charles H. Langmuir, Hanlin Chen, Shufeng Yang, Zhongyuan Ren
    Journal of Earth Science, 2016, 27(3): 519-528. https://doi.org/10.1007/s12583-016-0676-4

    The ultramafic dikes in the Tarim large igneous province (Tarim LIP), exposed in the Xiaohaizi area in the northwestern Tarim Basin of northwestern China, have porphyritic textures, and the olivine and clinopyroxene are as the major phenocryst phases. The groundmass therein consists of clinopyroxene, plagioclase and Fe-Ti oxides, with the cryptocrystalline texture. The olivine phenocrysts in one typical ultramafic dike have Fo (Mg/(Mg+Fe)) numbers ranging from 73 to 85, which are not in equilibrium with the olivine (Mg# of 89) from the host rock crystalized. Combined with microscope observation, both the olivine and clinopyroxene phenocrysts as well as some Fe-Ti oxides in the ultramafic rock are accounted as cumulates. The liquid (parental magma) composition of SiO2 of 45.00 wt.%–48.82 wt.%, MgO of 9.93 wt.%–18.56 wt.%, FeO of 5.85 wt.%–14.17 wt.%, CaO of 7.54 wt.%–11.52 wt.%, Al2O3 of 8.70 wt.%–11.62 wt.% and TiO2 of 0.00 wt.%–3.43 wt.% in the Xiaohaizi ultramafic rock was estimated by mass balance, and the results show a reasonable liquid proportion in the cumulate-bearing ultramafic dike (ca. 45%–60% in the whole rock). The estimated parental magma composition corresponds to a melting temperature of 1 300–1 550 ºC, which is equal or higher than those of a normal asthenosphere mantle, supporting the involvement of a mantle plume. Combined with other previous studies, an evolution model for the formation processes of the Xiaohaizi ultramafic dike of the Tarim LIP is proposed.

  • Zhenbing She, Fanyan Yang, Wei Liu, Luhua Xie, Yusheng Wan, Chao Li, Dominic Papineau
    Journal of Earth Science, 2016, 27(2): 297-316. https://doi.org/10.1007/s12583-015-0654-4

    The Lomagundi-Jatuli Event (LJE) is one of the largest and earliest positive carbon isotope excursions preserving δ13Ccarb values between +5 and +16‰ in Paleoproterozoic carbonates worldwide. However, the duration, amplitude and patterns of these excursions remain poorly constrained. The 2.14–1.83 Ga Hutuo Group in the North China Craton is a >10 km thick volcano- sedimentary sequence, including >5 km thick well-preserved carbonates that were deposited in supra- tidal to sub-tidal environments. C-O isotopic and elemental analyses of 152 least altered samples of the carbonates revealed a three-stage δ13C evolution. It began with an exclusively positive δ13Ccarb (+1.3 to + 3.4‰) stage in the ~2.1 Ga carbonate in the Dashiling and Qingshicun Formations, followed by a transition from positive values to oscillating positive and negative values in ~3 000 m thick carbonates of the Wenshan, Hebiancun, Jianancun, and Daguandong Formations, and end with exclusively negative δ13Ccarb values preserved in > 500 m thick dolostones of the Huaiyincun and Beidaxing Formations. It appears that much of the LJE, particularly those extremely positive δ13Ccarb signals, was not recorded in the Hutuo carbonates. The exclusively positive δ13Ccarb values (+1.3 to + 3.4‰) preserved in the lower formations likely correspond to the end of the LJE, whereas the subsequent two stages reflect the aftermath of the LJE and the onset of Shunga-Francevillian event (SFE). The present data point to an increased influence of oxygen on the carbon cycle from the Doucun to the Dongye Subgroups and demonstrate that the termination of the LJE in the North China Craton is nearly simultaneous with those in Fennoscandia and South Africa.

  • Tsuyoshi Ito, Xin Qian, Qinglai Feng
    Journal of Earth Science, 2016, 27(3): 403-411. https://doi.org/10.1007/s12583-016-0672-x

    The Changning-Menglian belt, distributed over southwestern Yunnan Province in Southwest China, contains oceanic rocks that are considered to be remnants of the Paleotethys. This study observed Triassic siliceous rocks of the Muyinhe Formation in the Changning-Menglian belt and analyzed their geochemistry. The samples have high concentrations of SiO2 (81.65 wt.%–88.38 wt.%; average: 84.99 wt.%±2.14 wt.%). Most of the samples were plotted in the non-hydrothermal field on the Al-Fe-Mn diagram. Most of the samples were plotted in the continental margin field on the Fe2O3/TiO2-Al2O3/(Al2O3+Fe2O3) and (La/Ce)N-Al2O3/(Al2O3+Fe2O3) diagrams. Moreover, the samples show a flat REE (rare earth element) pattern normalized to NASC (North America shale composite). These geochemical results, in addition to the lack of rhythmical bedding of the siliceous rocks, strongly suggest that the siliceous rocks are unlikely to represent pelagic deposits. Although previous studies have suggested that the siliceous rocks are pelagic deposits, the present results indicate that the extent of the pelagic ocean basins in the Paleotethys during the Triassic is probably less than previously believed. These non-pelagic deposits may represent the closure stage of the Paleotethys.

  • Boonnarong Arsairai, Akkhapun Wannakomol, Qinglai Feng, Chongpan Chonglakmani
    Journal of Earth Science, 2016, 27(3): 350-364. https://doi.org/10.1007/s12583-016-0666-8

    The petroleum exploration has been conducted in the Khorat Plateau since 1962 and two gas fields have been discovered and commercially produced. The lacustrine facies of the Huai Hin Lat Formation is believed to be one of the main source rocks of the gas. Therefore, investigation and analysis of the Huai Hin Lat shale for understanding the paleoenvironment and petroleum source rock are carried out in this study. Petrographical study and geochemical analysis of shale samples were performed to explain the paleoproductivity and past redox condition. The palynofacies assemblage comprises abundant AOM, acritarchs, phytoclasts, and very small amount of spores and pollen. Geochemical analysis was used to determine the total organic carbon (TOC) and the concentration of major, trace, and rare earth elements. The paleoproductivity proxies are composed of palynofacies, TOC, excess SiO2, Ba/Al, and P/Al. They reflect a high paleoproductivity except the middle of the lower part (bed 3) and the lower bed 13 of the upper part. Bed 3 shows the highest peak of TOC and the lower bed 13 exhibits a relatively lower TOC, which can be explained by the excellent and the poorer preservation condition, respectively. The paleoredox proxies consist of U/Th, V/Cr, NiCo, (Cu+Mo)/Zn, Ni/V, and Ce anomaly. They are used to establish the depositional environments, to characterize the organic matter content, and to assess the source rock potential. They reflect many high peaks and predominantly high values of paleoredox proxies except the middle part and the lower bed (lower bed 13) of the upper part. They indicate that the section was mainly under anoxic or reducing condition, which is supported by the high Ce/Ce* (>0.8) and V/Cr (>2.0) values. The middle of the lower part (bed 3) shows lower productivity but it contains the highest peak of TOC, which is conformed to be the excellent preservation of organic matters in the strong reducing condition. The middle part, which shows high productivity, contains relatively lower TOC as it possesses a less reducing condition compared to the more reducing intervals. The lower bed 13 of the upper part shows a less reducing condition and a lower TOC, which conforms to a lower productivity. The organic matters of the Huai Hin Lat Formation consist mainly of AOM and acritarchs and possess good to excellent TOC (2%–7%). They belong mainly to type I and type II kerogens with some mixture of type III as indicated by the presence of phytoclasts, spores, and pollen. The organic matters of the Huai Hin Lat Formation, based on the kerogen type and the thermal history, have already generated significant amount of oil and some gas to the Sap Phlu Basin.

  • Robert E. Criss
    Journal of Earth Science, 2016, 27(1): 2-8. https://doi.org/10.1007/s12583-015-0641-9

    Statistical methods are commonly used to evaluate natural populations and environmental variables, yet these must recognize temporal trends in population character to be appropriate in an evolving world. New equations presented here define the statistical measures of aggregate historical populations affected by linear changes in population means and standard deviations. These can be used to extract the statistical character of present-day populations, needed to define modern variability and risk, from tables of historical data that are dominated by measurements made when conditions were different. As an example, many factors such as climate change and in-channel structures are causing flood levels to rise, so realistic estimation of future flood levels must take such secular changes into account. The new equations provide estimates of water levels for “100-year” floods in the USA Midwest that are 0.5 to 2 m higher than official calculations that routinely assume population stationarity. These equations also show that flood levels will continue to rise by several centimeters per year. This rate is nearly ten times faster than the rise of sea level, and thus represents one of the fastest and most damaging rates of change that is documented by robust data.

  • Brad Walker
    Journal of Earth Science, 2016, 27(1): 47-54. https://doi.org/10.1007/s12583-016-0628-1

    The Birds Point-New Madrid Floodway (BP-NMF) and the Yolo Bypass, located on the Mississippi and Sacramento rivers, respectively, are agriculture areas that were once each part of vast wetlands but are now intermittently used for flood control. Here the similarity stops, the BP-NMF has been used to convey floodwaters only twice in nearly 80 years, while the Yolo Bypass is used for this purpose on average every other year. The consequences are greatly different. In 2011, the BP-NMF was activated through the explosive detonation of the ‘fuse plug” portion of its levees, resulting in elevated property and economic damages, crop losses, and litigation. High-energy flows following the opening of the BP-NMF scour coarse sediment in the vicinity of the opening of the BP-NMF and deposit this material within the floodway, including on agricultural fields. In general the environment of much of the BP-NMF provides poor wildlife habitat. In contrast, the routine operation of Yolo Bypass is expected, avoids damage and litigation, supplies organic-rich sediment to fields, and provides good wildlife habitat. The difference between the two systems is attributed to a better approximation of natural conditions on the Yolo Bypass.

  • Yi Sun, Junwei Wan, Songyuan Yang, Xinghua Xue, Kun Huang
    Journal of Earth Science, 2016, 27(1): 110-116. https://doi.org/10.1007/s12583-016-0640-5

    Hydrological data on the Upper Qingjiang River from 1960 to 2012 document trends of runoff caused by hydropower engineering projects and long-term changes in rainfall. Annual runoff correlates strongly with annual precipitation, but is significantly reduced after reservoir construction compared to earlier values. Comparisons of intense, pre- and post-construction rainfall events suggest that the Chebahe and Dalongtan reservoir projects respectively clips the magnitude of the flood peaks and delays runoff delivery.

  • Wenqiang Yang, Xin Qian, Qinglai Feng, Shangyue Shen, Chongpan Chonglakmani
    Journal of Earth Science, 2016, 27(3): 378-390. https://doi.org/10.1007/s12583-016-0670-z

    The Nan-Uttaradit suture is marked by a narrow N-S trending and discontinuous ophiolite belt in northern Thailand. This suture zone is a mélange composed of gabbro, tholeiitic metabasalt, andesite and radiolarian chert. Samples of gabbro and meta-basalt in the Nan-Uttaradit suture yield zircon U-Pb ages of 311±10 and 316±3 Ma, respectively, interpreted as the crystallization ages of the rocks, suggesting the Nan-Uttaradit Ocean existed in the Late Carboniferous. Our results indicate that the Nan-Uttaradit Ocean co-existed with the Ailaoshan-Jinshajiang Ocean to the north and was probably an along-strike extension of the latter.

  • Zuomin Zhou, Changqian Ma, Caifu Xie, Lianxun Wang, Yuanyuan Liu, Wei Liu
    Journal of Earth Science, 2016, 27(3): 444-460. https://doi.org/10.1007/s12583-016-0677-3

    The South China Block is characterized by the large-scale emplacement of felsic magmas and giant ore deposits during the Yanshanian. We present zircon Hf isotopic compositions, whole-rock major and trace element compositions of the Fengshun complex, located in eastern Guangdong Province, South China. The Fengshun complex is a multi-stage magmatic intrusion. It is composed of two main units, i.e., the Mantoushan (MTS) syeno-monzogranites, alkali feldspar granites and the Hulutian (HLT) alkali feldspar granites. LA-ICPMS zircon dating shows that the complex emplaced in 166–161 and 139±2 Ma, respectively. Geochemically, the MTS granites show relatively various geochemical compositions with low REE contents (87.76×10-6–249.71×10-6), Rb/Sr ratios (1.19–58.93), pronounced Eu negative anomaly (0.01–0.37) and low Nb/Ta ratios (2.40–6.82). In contrast, the HLT granites exhibit relatively stable geochemical characteristics with high REE contents (147.35×10-6–282.17×10-6), Rb/Sr ratios (2.05–10.30) and relatively high Nb/Ta ratios (4.45–13.00). The isotopic data of the MTS granites display relatively enriched values, with I Sr varying from 0.708 2 to 0.709 7, ε Nd(t) from -7.8 to -6.9 and ε Hf(t) from -7.4 to -3.2, in comparison with those of the HLT which are ISr=0.703 05–0.704 77, ε Nd(t)=-5–-3.4 and ε Hf(t)=-0.7–1.8). The two-stage model ages of the MTS granites (T 2DM(Nd)=1.51–1.59 Ga and T 2DM(Hf)=1.26–1.48 Ga) are also higher than those of the HLT granites (T 2DM(Nd)=1.21–1.34 Ga and T 2DM(Hf)=0.96–1.10 Ga). Thus the MTS and HLT granites might originate from different sources. The former is more likely derived from partial melting of Meso-Proterozoic basement triggered by upwelling of asthenosphere and/or underplate of the basaltic magma and then extensive fractional crystallisation, similar to the genesis of Early Yanshanian granitoids of the EW-trending tectono-magmatism belt in the Nanling range. In comparison, the latter might have involved with asthenosphere component, similar to the Early Cretaceous granitoids of NE-NNE-trending granitoid-volcanic belt in coastal region, southeastern China. We propose that the MTS granites were mainly formed in Paleo-Tethyan post-orogenic extensional tectonic setting whereas the HLT granites were formed in the back-arc extensional tectonic setting. The period at 139 Ma represents the initial time of roll-back of the paleo-Pacific Plate in SE-trending.

  • Xin Qian, Qinglai Feng, Yuejun Wang, Wenqiang Yang, Chongpan Chonglakmani, Denchok Monjai
    Journal of Earth Science, 2016, 27(3): 365-377. https://doi.org/10.1007/s12583-016-0669-5

    The volcanic rocks from the Sayabouli area in northwestern Laos have been poorly studied. These volcanic rocks are traditionally mapped as the Permian–Early Triassic sequences on the geological map. One basaltic-andesite from the Sayabouli area yields a zircon U-Pb age of 237.7±1.7 Ma, suggesting a Middle Triassic origin. All basalt and basaltic-andesite samples from the Sayabouli area show depletions in HFSEs (e.g., Nb, Ta, Ti) and have high LILE/HFSE ratios, and exhibit the geochemical affinity to the continental arc volcanic rocks and are geochemically similar to the continental arc volcanic rocks from the Phetchabun belt in northeastern Thailand, suggesting a Late Permian–Middle Triassic continental margin in the Sayabouli area of northwestern Laos and Phetchabun area of northeastern Thailand. Our data indicate that the Phetchabun arc volcanic belt through the western Loei sub-belt can be linked to the Sayabouli area in northwestern Laos.

  • Xiaowan Xing, Yuejun Wang, Yuzhi Zhang
    Journal of Earth Science, 2016, 27(3): 412-424. https://doi.org/10.1007/s12583-015-0647-3

    The Wuliangshan Group occurs to the east of the Lancang giant igneous zone in SW Yunnan, and is mainly composed of low-grade metamorphosed sedimentary rocks. The group has been considered as the syn-orogenic product of the Baoshan with Simao-Indochina blocks. However, its depositional time and provenance remain to be poorly constrained. This paper presents zircon U-Pb dating and Lu-Hf-isotopic data for five representative sandstone samples from the Wuliangshan Group. The detrital grains yield a major age-peak at ∼259 Ma, and four subordinary age-peaks at ∼1 859, ∼941, ∼788, and ∼447 Ma, respectively. Our results suggest that the Wuliangshan metasedimentary sequence was deposited after Middle Triassic rather than previously-thought Cambrian. The detrital zircon age spectrum, along with in-situ Lu-Hf isotopic data suggest that the Wuliangshan Group might be a syncollisional sedimentary product related to the collision of Baoshan with Simao-Indochina blocks. It is inferred that the provenance of the Wuliangshan Group is mainly from the Simao/Yangtze blocks to the east rather than the Baoshan Block or Lancang igneous zone to the west.

  • Kaiming Li, Zhongqin Li, Cuiyun Wang, Baojuan Huai
    Journal of Earth Science, 2016, 27(1): 139-150. https://doi.org/10.1007/s12583-016-0614-7

    Many small mountain glaciers have been reported undergoing strong shrinkage, and it is therefore important to understand how they respond to climate change. The availability of topographic maps from 1962, Landsat TM imagery from 1990 and ASTER (Advanced Spaceborne Thermal Emission and Radiometer) imagery from 2006 and field investigation of some glaciers allow a comprehensive analysis of glacier change based on glacier size and topography on Mt. Bogda. Results include: (1) an overall loss of a glacierized area by 31.18±0.31 km2 or 21.6% from 1962 to 2006, (2) a marked dependence of glacier area shrinkage on initial size, with smaller glaciers experiencing higher shrinkage levels, (3) the disappearance of 12 small glaciers, (4) a striking difference in area loss between the southern and northern slopes of 25% and 17%, respectively. A subset of the investigated glaciers shows that the area 57.45±0.73 km2 in 1962 reduced to 54.79±0.561 km2 in 1990 and 48.88±0.49 km2 in 2006, with a relative area reduction of 4.6% during 1962–1990, and 10.8% during 1990–2006. The corresponding volume waste increased from 6.9% to 10.2%. Three reference glaciers were investigated in 1981 and revisited in 2009. Their terminus experienced a marked recession. Meteorological data from stations around Mt. Bogda reveals that glacier shrinkage is correlated with winter warming and an extension of the ablation period. Precipitation on the northwest side of the range shows a marked increase, with a slight increase on the southeast side.

  • Chao Li, Maoyan Zhu, Xuelei Chu
    Journal of Earth Science, 2016, 27(2): 167-169. https://doi.org/10.1007/s12583-016-0697-1
  • Robert E. Criss, Mingming Luo
    Journal of Earth Science, 2016, 27(1): 117-122. https://doi.org/10.1007/s12583-016-0639-y

    The huge winter storm of December 23–29, 2015 delivered heavy rainfall in a broad swath across the USA, deluging East-Central Missouri. Record high river levels were set at many sites, but damages were most pronounced in developed floodplain areas, particularly where high levees were built or river channels greatly narrowed. An average of 20 cm of rain that mostly fell in three days impacted the entire 10 300 km2 Meramec Basin. Compared to the prior record flood of 1982, the highest relative stage (+1.3 m) on Meramec River occurred at Valley Park proximal to (1) a new levee, (2) a landfill in the floodway, (3) large floodplain construction fills, and (4) tributary creek basins impacted by suburban sprawl. Even though only a small fraction of the 1.8 million km2 Mississippi River watershed above St. Louis received extraordinary rainfall during this event, the huge channelized river near and below St. Louis rapidly rose to set the 3rd-highest to the highest stages ever, exhibiting the flashy response typical of a much smaller river.

  • Xiang Fu, Yadong Mei, Zhihuai Xiao
    Journal of Earth Science, 2016, 27(1): 68-73. https://doi.org/10.1007/s12583-016-0615-6

    The application of conventional flood operation regulation is restricted due to insufficient description of flood control rules for the Pubugou Reservoir in southern China. Based on the requirements of different flood control objects, this paper proposes to optimize flood control rules with punishment mechanism by defining different parameters of flood control rules in response to flood inflow forecast and reservoir water level. A genetic algorithm is adopted for solving parameter optimization problem. The failure risk and overflow volume of the downstream insufficient flood control capacity are assessed through the reservoir operation policies. The results show that an optimised regulation can provide better performance than the current flood control rules.

  • Zaitao Pan, Yuanjie Zhang, Xiaodong Liu, Zhiqiu Gao
    Journal of Earth Science, 2016, 27(1): 22-36. https://doi.org/10.1007/s12583-016-0627-2

    Both central-eastern U.S. and China are prone to increasing flooding from Mississippi River and Yangtze River basins respectively. This paper contrasts historical and projected spatialtemporal distribution of extreme precipitation in these two large river basins using 31 CMIP5 (coupled model intercomparison project phase 5) models’ historical and RCP8.5 (representative concentration pathway) experiments. Results show that (1) over both river basins, the heaviest rainfall events have increased in recent decades while the lightest precipitation reduced in frequency. Over Mississippi River Basin, both the lightest precipitation (<2.5 mm/day) and heaviest (>50 mm/day) would decrease in frequency notably after mid-2020s while intermediate events occur more frequently in future; whereas over the Yangtze River Basin, all categories of precipitation are projected to increase in frequency over the coming decades. (2) Although the consensus of CMIP5 models was able to reproduce well domain-time mean and even time-averaged spatial distribution of precipitation, they failed to simulate precipitation trends both in spatial distribution and time means. In a similar fashion, models captured well statistics of precipitation but they had difficulty in representing temporal variations of different precipitation intensity categories. (3) The well-documented 2nd half of the 20th century surface summer cooling over the two river basins showed different associations with precipitation trends with higher anti-correlation between them over the U.S. region, implying different processes contributing to the cooling mechanisms of the two river basins.

  • Elizabeth A. Hasenmueller, Heather K. Robinson
    Journal of Earth Science, 2016, 27(1): 98-109. https://doi.org/10.1007/s12583-016-0632-5

    Cement channel linings in an urban stream in St. Louis, Missouri increase event water contributions during flooding, shorten transport times, and magnify geochemical variability on both short and seasonal timescales due to disruption of hyporheic flowpaths. Detailed analyses of water isotopes, major and trace elements, and in situ water quality data for an individual flood event reveal that baseflow contributions rise by 8% only 320 m downstream of the point where this particular channel changes from cement-lined to unlined. However, additional hydrograph separations indicate baseflow contributions are variable and can be much higher (average baseflow increase is 16%). Stream electrical conductivity (EC) and solute concentrations in the lined reach were up to 25% lower during peak flow than in the unlined channel, indicating a greater event flow fraction. In contrast, during low flow, stream EC and solute concentrations in the lined reach were up to 30% higher due to the restricted inflow of more dilute groundwater. Over longer timescales, EC, solute concentrations, turbidity, and bacterial loads decrease downstream signifying increasing contributions of dilute baseflow. The decreased connectivity of surface waters and groundwaters along the hyporheic zone in lined channels increases the hydrologic and geochemical variability of urban streams.

  • Fatemeh Sepidbar, Hassan Mirnejad
    Journal of Earth Science, 2016, 27(3): 507-518. https://doi.org/10.1007/s12583-016-0668-6

    Shahre-Babak ophiolite is a part of the inner Zagros ophiolite belt in Iran. Major parts of intrusive masses of Share-Babak ophiolite are gabbro and plagiogranite. The SiO2 versus Na2O+K2O diagram shows that the palgiogranites are related to calk-alkaline series. Rare earth elements exhibit relatively similar pattern that indicates these rocks are syngenetic. Also, REE patterns display an enrichment of LREE compared to HREE, and are characterized by flat to slightly concaveup patterns from Gd to Yb. Such patterns contrast sharply with those of plagiogranites in more complete ophiolite sequences, such as the Semail ophiolite, Oman, or the Troodos ophiolite, Cyprus, and Neyriz, where patterns are much flatter and slightly LREE-depleted. The slightly LREE-enriched patterns of the Shahre-Babak plagiogranites support a partial melting origin for them. The low TiO2, Nb, Ta content and high LREE concentrations of the Shahre-Babak plagiogranites indicate that the rocks were likely derived from the anatexis of amphibolites, which were related to hydrothermal alteration of gabbros in intra-oceanic back-arc basin.

  • Wenlang Qiao, Xianguo Lang, Yongbo Peng, Kaiyuan Jiang, Wu Chen, Kangjun Huang, Bing Shen
    Journal of Earth Science, 2016, 27(2): 170-179. https://doi.org/10.1007/s12583-016-0688-2

    Phosphorite nodule beds are discovered in the black shale of basal Niutitang Formation throughout the Yangtze Platform in South China, recording an important phosphorite-generation event. Platform-wide phosphorite precipitation requires special oceanographic and geochemical conditions, thus the origin of the Niutitang phosphorite nodules may provide valuable information about the ocean chemistry in the Early Cambrian. In this study, we measured sulfur and oxygen isotopic compositions of sulfate extracted from phosphorite nodules collected from the basal Niutitang Formation. Phosphorite associated sulfate (PAS) is a trace amount of sulfate that incorporates into crystal lattice during phosphorite precipitation, accordingly PAS records the geochemical signals during phosphorite nodule formation. Sulfur isotopic composition of PAS (δ34SPAS) ranges from -1.16‰ to +24.48‰ (mean=+8.19‰, n=11), and oxygen isotopic value (δ18OPAS) varies between -5.3‰ and +26.3‰ (mean=+7.0‰, n=8). Most phosphorite nodules have low δ34SPAS and low δ18OPAS values, suggesting PAS mainly derived from anaerobic oxidation of H2S within suboxic sediment porewater. We propose that phosphate was delivered to the Yangtze Platform by a series of upwelling events, and was scavenged from seawater with the precipitation of FeOOH. The absorbed phosphate was released into suboxic porewater by the reduction of FeOOH at the oxic-suboxic redox boundary in sediments, and phosphorite nodule precipitated by the reaction of phosphate with Ca2+ diffused from the overlying seawater. The platform-wide deposition of phosphorite nodules in the basal Niutitang Formation implies the bottom water might be suboxic or even oxic, at least sporadically, in Early Cambrian. We speculate that the intensified ocean circulation as evident with frequent occurrences of upwelling events might be the primary reason for the episodic oxidation of the Yangtze Platform in Early Cambrian.

  • Zon-Yee Yang, Hamid Reza Pourghasemi, Yen-Hung Lee
    Journal of Earth Science, 2016, 27(1): 151-159. https://doi.org/10.1007/s12583-016-0633-4

    The Chenyulan Stream in Central Taiwan follows the Chenyulan fault line which is a major boundary fault in Taiwan. In recent years, many destructive landslides have occurred in the Chenyulan Creek Basin after heavy rainfall accompanied by several strong typhoons. Three examples of landslide distributions in the Chenyulan Creek Basin, before and after 1996 and after 2004 are analyzed. The box dimension and two-point correlation dimension are employed to describe the landslide area size distribution and distance distribution between every two landslides, respectively. It is found that the number of landslides increased in this period. However, the average landslide area decreased. The correlation dimension gradually increased from 1.15 to 1.32 during this period (before and after 1996 and after 2004). This implies that the landslide distribution in the Chenyulan Creek Basin has become diffuse and extensive. The box dimension value shows the degree of the landslide density occupied in a space. The box dimension also increased from 0.3 to 0.69 during this period. The increasing box dimension means that the landslide presented in this creek basin has gradually increased. This indicates that the slopes of this creek basin have become more unstable and susceptible.

  • Yuzhi Zhang, Yuejun Wang, Boontarika Srithai, Burapha Phajuy
    Journal of Earth Science, 2016, 27(3): 425-434. https://doi.org/10.1007/s12583-015-0646-4

    The Changning-Menglian suture in SW Yunnan has been accepted as the Paleotethyan main ocean. However, it has been a matter of debate as to its southerly extension in NW Thailand (the Chiang Mai-Chiang Rai vs. Nan-Uttaradit zone). Our field investigation identified the high-iron basaltic rocks in the Chiang Dao Permian standard profile in NW Thailand. The high-iron rocks provide crucial records for understanding the controversy on the location of Paleotethyan main ocean in NW Thailand. The Early Permian high-iron samples show extremely high FeOt (20.96 wt.%–25.56 wt.%) and TiO2 (6.07 wt.%–6.34 wt.%) and low SiO2 (38.54 wt.%–43.46 wt.%) and MgO (1.61 wt.%–2.40 wt.%) contents. Such characteristics are similar to those of the Fenner differentiation trend rarely observed in the natural system, distinct from those of the “normal” Bowen trend. Their chondritenormalized REE and primitive mantle-normalized patterns are generally similar to those of typical OIB. The initial 87Sr/86Sr ratios and εNd(t) values range from 0.704 677 to 0.705 103 and 3.16 to 3.48, respectively, falling near the field of typical OIB (oceanic-island basalt). These data synthetically suggest that the Chiang Dao high-iron rocks are the products of high-degree partial melting of peridotite with Fe-rich eclogitic blobs/streaks in response to a seamount setting. In comparison with the Permian tectonic setting in SW Yunnan and NW Thailand, it is inferred that the Paleotethyan Ocean was located between the Shan-Thai terrane of Sibumasu and Sukhothai arc along the Inthanon zone of the Chiang Mai-Chiang Rai rather than Nan-Uttaradit zones.

  • Haifeng Fan, Hanjie Wen, Xiangkun Zhu
    Journal of Earth Science, 2016, 27(2): 282-296. https://doi.org/10.1007/s12583-016-0687-3

    It is generally considered that a significant change in oceanic redox conditions occurred during the Ediacaran–Cambrian transition. However, there are currently two major conflicting views on the degree of oxygenation of deep water (oxic vs. ferruginous) during this interval. To date, the oxygenation conditions of the Early Cambrian ocean have not been well constrained. The oxygenation magnitude and mechanism of the Early Cambrian ocean could be critical to the significant biological evolution of the “Cambrian Explosion”. To constrain the Early Cambrian oceanic redox environment, we conducted an integrated study on iron and sulfur isotopes and redox-sensitive elements (Mo, U, and V) of Lower Cambrian phosphorite deposits from two shallow sections (Meishucun and Gezhongwu) and a deeper water section (Zunyi) from the Yangtze Platform, South China. The near zero δ56Fe values from the two shallow sections studied here reflect oxic conditions in the lower phosphorite deposition. An obvious positive shift in δ56Fe and redox-sensitive element content was observed in the middle parts of the two shallow water sections, which might reflect loss of light iron by dissimilatory iron reduction during early diagenesis under suboxic shallow water in the platform. However, the highly positive δ56Fe values in the deep section could reflect a lower oxidation degree of dissolved Fe(II) under anoxic deep water. The data suggest redox-stratified oceanic conditions during the Early Cambrian, in which completely oxygenated shallow water (platform) coexisted with anoxic deep water (slope). We propose that prolonged upwelling of dissolved organic carbon (DOC)-, Fe(II)- and phosphorus-rich anoxic deep water in a redox-stratified ocean could have increased exchange with the open ocean, resulting in major phosphorite deposition in oxic-suboxic conditions. The progressive oxygenation of the ocean may have facilitated the Early Cambrian biotic diversification.