Heavy Magnesium Isotope Evidence for a Key Role of Serpentinite-Derived Fluids in Arc Magmatism

Rui An , Yongsheng He , Shan Ke , Guochun Zhao , Aiying Sun , Yang Wang , Hongsheng Xu

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (6) : 2798 -2802.

PDF
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (6) :2798 -2802. DOI: 10.1007/s12583-025-2038-8
Letter
letter

Heavy Magnesium Isotope Evidence for a Key Role of Serpentinite-Derived Fluids in Arc Magmatism

Author information +
History +
PDF

Cite this article

Download citation ▾
Rui An, Yongsheng He, Shan Ke, Guochun Zhao, Aiying Sun, Yang Wang, Hongsheng Xu. Heavy Magnesium Isotope Evidence for a Key Role of Serpentinite-Derived Fluids in Arc Magmatism. Journal of Earth Science, 2025, 36(6): 2798-2802 DOI:10.1007/s12583-025-2038-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An R, Zhao G C, Han Y G, et al. . Slab-Derived Fluid Contributes to Subducted Material Recycling and Crust Growth: Insights from the Arc Volcanics in East Junggar (NW China). Lithos, 2025, 510: 108114.

[2]

An R. Paleozoic Tectonic Evolution in the Northern Margin of East Junggar, NW China: Constraints from Volcanic Rocks in the Qiakurtu-Ertai Area, 2021, Xi’an. Northwest University1-173(in Chinese with English Abstract)

[3]

Chen Y X, Schertl H P, Zheng Y F, et al. . Mg-O Isotopes Trace the Origin of Mg-Rich Fluids in the Deeply Subducted Continental Crust of Western Alps. Earth and Planetary Science Letters, 2016, 456: 157-167.

[4]

Cooper G F, MacPherson C G, Blundy J D, et al. . Variable Water Input Controls Evolution of the Lesser Antilles Volcanic Arc. Nature, 2020, 582(7813): 525-529.

[5]

Defant M J, Drummond M S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 1990, 347(6294): 662-665.

[6]

Elliott T, Plank T, Zindler A, et al. . Element Transport from Slab to Volcanic Front at the Mariana Arc. Journal of Geophysical Research: Solid Earth, 1997, 102(B7): 14991-15019.

[7]

Foden J, Sossi P A, Nebel O. Controls on the Iron Isotopic Composition of Global Arc Magmas. Earth and Planetary Science Letters, 2018, 494: 190-201.

[8]

He Y S, Wu H J, Ke S, et al. . Iron Isotopic Compositions of Adakitic and Non-Adakitic Granitic Magmas: Magma Compositional Control and Subtle Residual Garnet Effect. Geochimica et Cosmochimica Acta, 2017, 203: 89-102.

[9]

Hu Y, Teng F Z, Ionov D A. Magnesium Isotopic Composition of Metasomatized Upper Sub-Arc Mantle and Its Implications to Mg Cycling in Subduction Zones. Geochimica et Cosmochimica Acta, 2020, 278: 219-234.

[10]

Hu Y, Teng F Z, Plank T, et al. . Magnesium Isotopic Composition of Subducting Marine Sediments. Chemical Geology, 2017, 466: 15-31.

[11]

Huang K J, Teng F Z, Shen B, et al. . Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 14904-14909.

[12]

Liu X N, Hin R C, Coath C D, et al. . Equilibrium Olivine-Melt Mg Isotopic Fractionation Explains High δ26Mg Values in Arc Lavas. Geochemical Perspectives Letters, 2022, 22: 42-47.

[13]

Pettke T, Bretscher A. Fluid-Mediated Element Cycling in Subducted Oceanic lithosphere: The Orogenic Serpentinite Perspective. Earth-Science Reviews, 2022, 225: 103896

[14]

Qiao X-Y, Xiong J-W, et al. . Magnesium and Boron Isotope Evidence for the Generation of Arc Magma through Serpentinite-Mélange Melting. National Science Review, 2025, 12(1): nwae363

[15]

Qu Y R, Liu S G, Gamaleldien H. Insights into Subduction-Zone Fluid-Rock Interactions and Carbon Cycling from Magnesium Isotopes of Subducted Ophiolitic Mélanges in the Arabian-Nubian Shield. Geochemistry, Geophysics, Geosystems, 2025, 26(3): e2024GC011918

[16]

Rapp R P, Shimizu N, Norman M D, et al. . Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 1999, 160(4): 335-356.

[17]

Sajona F G, Maury R C, Bellon H, et al. . Initiation of Subduction and the Generation of Slab Melts in Western and Eastern Mindanao, Philippines. Geology, 1993, 21(11): 1007

[18]

Salters V J M, Stracke A. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 2004, 5(5): Q05B07.

[19]

Sang M, Tan Z, Xiao W J, et al. . Formation of the Eclogites of the Atbashi Complex, Kyrgyzstan, in a Subduction Zone Mélange Diapir. Communications Earth & Environment, 2023, 4: 434.

[20]

Schmidt M W, Poli SHolland H D, Turekian K K, Rudnick R L. Devolatilization during Subduction. Treatise on Geochemistry 4: The Crust, 2014, Amsterdam. Elsevier669-701.

[21]

Syracuse E M, van Keken P E, Abers G A. The Global Range of Subduction Zone Thermal Models. Physics of the Earth and Planetary Interiors, 2010, 183(1/2): 73-90.

[22]

Teng F Z. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287.

[23]

Teng F Z, Li W Y, Ke S, et al. . Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 2010, 74(14): 4150-4166.

[24]

Teng F Z, Hu Y, Chauvel C. Magnesium Isotope Geochemistry in Arc Volcanism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7082-7087.

[25]

Turner S J, Langmuir C H. An Evaluation of Five Models of Arc Volcanism. Journal of Petrology, 2022, 63(3): egac010.

[26]

Wang S J, Teng F Z, Li S G, et al. . Tracing Subduction Zone Fluid-Rock Interactions Using Trace Element and Mg-Sr-Nd Isotopes. Lithos, 2017, 290: 94-103.

[27]

Wang S J, Kang J T, Ding X, et al. . Magnesium Isotope Behavior in Oceanic Magmatic Systems: Constraints from Mid-Ocean Ridge Lavas from the East Pacific Rise. Earth and Planetary Science Letters, 2024, 638: 118739

[28]

Wang Y, He Y S, Ke S. Mg Isotope Fractionation during Partial Melting of Garnet-Bearing Sources: An Adakite Perspective. Chemical Geology, 2020, 537: 119478

[29]

Wood B J, Turner S P. Origin of Primitive High-Mg Andesite: Constraints from Natural Examples and Experiments. Earth and Planetary Science Letters, 2009, 283(1/2/3/4): 59-66.

[30]

Yang Q C, Fang W, Dai L Q, et al. . Heavy Mo-Mg-O Isotopes Anomaly Observed in Orogenic Magmatism: Serpentinites Fingerprint in Paleo-Oceanic Subduction Zone Magmatism. Geophysical Research Letters, 2025, 52(11): e2025GL115040

[31]

Yogodzinski G M, Volynets O N, Koloskov A V, et al. . Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, Far Western Aleutians. Journal of Petrology, 1994, 35(1): 163-204.

[32]

Zhang W, Kitagawa H, Huang F. Magnesium Isotope Composition of Volcanic Rocks from Cold and Warm Subduction zones: Implications for the Recycling of Subducted Serpentinites and Carbonates. Geochimica et Cosmochimica Acta, 2025, 391: 158-176.

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

PDF

289

Accesses

0

Citation

Detail

Sections
Recommended

/