Alteration and Metallogenic Zonation in Magmatic-Hydrothermal Ore Systems: Scientific Understandings and Exploration Implications

Degao Zhai , Jinchao Wu , Qingqing Zhao , Panagiotis Voudouris , Stylianos Tombros , Xinli Wang , Wangjie Chen , Jinghao Sun , Zhan Xu , Jiajun Liu

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (3) : 1303 -1308.

PDF
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (3) : 1303 -1308. DOI: 10.1007/s12583-025-2034-z
Editorial

Alteration and Metallogenic Zonation in Magmatic-Hydrothermal Ore Systems: Scientific Understandings and Exploration Implications

Author information +
History +
PDF

Cite this article

Download citation ▾
Degao Zhai, Jinchao Wu, Qingqing Zhao, Panagiotis Voudouris, Stylianos Tombros, Xinli Wang, Wangjie Chen, Jinghao Sun, Zhan Xu, Jiajun Liu. Alteration and Metallogenic Zonation in Magmatic-Hydrothermal Ore Systems: Scientific Understandings and Exploration Implications. Journal of Earth Science, 2025, 36(3): 1303-1308 DOI:10.1007/s12583-025-2034-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AudétatA The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential, 2019, 114(6): 1033-1056

[2]

BeckerS P, BodnarR J, ReynoldsT J. Temporal and Spatial Variations in Characteristics of Fluid Inclusions in Epizonal Magmatic-Hydrothermal Systems: Applications in Exploration for Porphyry Copper Deposits. Journal of Geochemical Exploration, 2019, 204: 240-255

[3]

BurischM, WalterB F, WälleM, et al.. Tracing Fluid Migration Pathways in the Root Zone below Unconformity-Related Hydrothermal Veins: Insights from Trace Element Systematics of Individual Fluid Inclusions. Chemical Geology, 2016, 429: 44-50

[4]

CookeD R, DeyellC L, WatersP J, et al.. Evidence for Magmatic-Hydrothermal Fluids and Ore-Forming Processes in Epithermal and Porphyry Deposits of the Baguio District, Philippines. Economic Geology, 2011, 106(8): 1399-1424

[5]

DengJ, WangQ F, SunX, et al.. Tibetan Ore Deposits: A Conjunction of Accretionary Orogeny and Continental Collision. Earth-Science Reviews, 2022, 235: 104245

[6]

GaoX, ZhouZ H, BreiterK, et al.. Ore-Formation Mechanism of the Weilasituo Tin-Polymetallic Deposit, NE China: Constraints from Bulk-Rock and Mica Chemistry, He-Ar Isotopes, and Re-Os Dating. Ore Geology Reviews, 2019, 109: 163-183

[7]

GrondahlC, ZajaczZ. Magmatic Controls on the Genesis of Porphyry Cu-Mo-Au Deposits: The Bingham Canyon Example. Earth and Planetary Science Letters, 2017, 480: 53-65

[8]

GrovesD I, GoldfarbR J, SantoshM. The Conjunction of Factors that Lead to Formation of Giant Gold Provinces and Deposits in Non-Arc Settings. Geoscience Frontiers, 2016, 7(3): 303314

[9]

HalleyS. Mapping Magmatic and Hydrothermal Processes from Routine Exploration Geochemical Analyses. Economic Geology, 2020, 115(3): 489-503

[10]

HedenquistJ W, ArribasA, ReynoldsT J. Evolution of an Intrusion-Centered Hydrothermal System; Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines. Economic Geology, 1998, 93(4): 373-404

[11]

HuiK X, QinK Z, LiZ Z, et al.. The Linkage between the Jiawula-Chaganbulagen Ag-Pb-Zn and Adjacent Porphyry Mo-Cu Mineralization, Inner Mongolia, Northeast China. Ore Geology Reviews, 2021, 134: 104153

[12]

HutchisonW, FinchA A, BoyceA J. The Sulfur Isotope Evolution of Magmatic-Hydrothermal Fluids: Insights into Ore-Forming Processes. Geochimica et Cosmochimica Acta, 2020, 288: 176-198

[13]

JiaL, WuC Z, LeiR X, et al.. Geochronology and Geochemistry of Zircon and Columbite-Tantalite Group Minerals from the Weilasituo Sn-Polymetallic Deposit, Northeastern China: Implications for the Relationship between Mineralization and the Magmatic-Hydrothermal Transition. Ore Geology Reviews, 2024, 168: 106047

[14]

KaszubaJ, YardleyB, AndreaniM Experimental Perspectives of Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions, 2013, 77(1): 153-188

[15]

KouzmanovK, PokrovskiG S. Hydrothermal Controls on Metal Distribution in Porphyry Cu (-Mo-Au) Systems. Economic Geology Special Publications, 2012, 16: 573-618

[16]

LehmannB. Formation of Tin Ore Deposits: A Reassessment. Lithos, 2021, 402: 105756

[17]

LiuX C, YuP P, XiaoC H. Tin Transport and Cassiterite Precipitation from Hydrothermal Fluids. Geoscience Frontiers, 2023, 14(6): 101624

[18]

LiuY F, JiangS H, BagasL. The Genesis of Metal Zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) Deposits in the Shallow Part of a Porphyry Sn-W-Rb System, Inner Mongolia, China. Ore Geology Reviews, 2016, 75: 150-173

[19]

OuyangH G, MaoJ W, SantoshM, et al.. The Early Cretaceous Weilasituo Zn-Cu-Ag Vein Deposit in the Southern Great Xing’ an Range, Northeast China: Fluid Inclusions, H, O, S, Pb Isotope Geochemistry and Genetic Implications. Ore Geology Reviews, 2014, 56: 503-515

[20]

PirajnoF Hydrothermal Processes and Mineral Systems, 2008 Dordrecht Springer

[21]

RichardsJ P. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 2011, 40(1): 1-26

[22]

SeedorffE, BartonM D, StavastW J A, et al.. Root Zones of Porphyry Systems: Extending the Porphyry Model to Depth. Economic Geology, 2008, 103(5): 939-956

[23]

SillitoeR H. Porphyry Copper Systems. Economic Geology, 2010, 105(1): 3-41

[24]

SongK R, TangL, ZhangS T, et al.. Genesis of the Bianjiadayuan Pb-Zn Polymetallic Deposit, Inner Mongolia, China: Constraints from in-situ Sulfur Isotope and Trace Element Geochemistry of Pyrite. Geoscience Frontiers, 2019, 10(5): 1863-1877

[25]

TausonV L, LipkoS V, SmagunovN V, et al.. Distribution and Segregation of Trace Elements during the Growth of Ore Mineral Crystals in Hydrothermal Systems: Geochemical and Mineralogical Implications. Russian Geology and Geophysics, 2018, 59(12): 1718-1732

[26]

WangF X, BagasL, JiangS H, et al.. Geological, Geochemical, and Geochronological Characteristics of Weilasituo Sn-Polymetal Deposit, Inner Mongolia, China. Ore Geology Reviews, 2017, 80: 1206-1229

[27]

WangX, WangK Y, GeW C, et al.. Fluid Evolution and Ore Genesis of the Weilasituo Li-Sn-Cu-Zn Polymetallic Deposit in Inner Mongolia: Evidence from Fluid Inclusion and C-H-O-Li Isotopes. Ore Geology Reviews, 2023, 163: 105750

[28]

WuJ C, ZhaiD G, ZhaoQ Q, et al.. In situ Trace Element Compositions of Sulfides Constraining the Genesis of the Worldclass Shuangjianzishan Ag-Pb-Zn Deposit, NE China. Ore Geology Reviews, 2023, 162: 105675

[29]

YuanS D, Williams-JonesA E, MaoJ W, et al.. The Origin of the Zhangjialong Tungsten Deposit, South China: Implications for W-Sn Mineralization in Large Granite Batholiths. Economic Geology, 2018, 113(5): 1193-1208

[30]

ZhaiD G. Fluid-Rock Interactions Leading to the Formation of the Epithermal Ag-Pb-Zn Veins: A Perspective of Thermodynamic Modeling. Fundamental Research, 2023, 3(4): 570-578

[31]

ZhaiD G, LiuJ J, WangJ P, et al.. Fluid Evolution of the Jiawula Ag-Pb-Zn Deposit, Inner Mongolia: Mineralogical, Fluid Inclusion, and Stable Isotopic Evidence. International Geology Review, 2013, 55(2): 204-224

[32]

ZhaiD G, LiuJ J, CookN J, et al.. Mineralogical, Textural, Sulfur and Lead Isotope Constraints on the Origin of Ag-Pb-Zn Mineralization at Bianjiadayuan, Inner Mongolia, NE China. Mineralium Deposita, 2019, 54(1): 47-66

[33]

ZhaiD G, Williams-JonesA E, LiuJ J, et al.. The Genesis of the Giant Shuangjianzishan Epithermal Ag-Pb-Zn Deposit, Inner Mongolia, Northeastern China. Economic Geology, 2020, 115(1): 101-128

[34]

ZhaiD G, LiuJ J, ZhangA L, et al.. U-Pb, Re-Os, and 40Ar/39Ar Geochronology of Porphyry Sn ± Cu ± Mo and Polymetallic (Ag-Pb-Zn-Cu) Vein Mineralization at Bianjiadayuan, Inner Mongolia, Northeast China: Implications for Discrete Mineralization Events. Economic Geology, 2017, 112(8): 2041-2059

[35]

ZhaiD G, LiuJ J, ZhangH Y, et al.. Origin of Oscillatory Zoned Garnets from the Xieertala Fe-Zn Skarn Deposit, Northern China: In situ LA-ICP-MS Evidence. Lithos, 2014, 190/191: 279-291

[36]

ZhaiD G, LiuJ J, ZhangH Y, et al.. A Magmatic-Hydrothermal Origin for Ag-Pb-Zn Vein Formation at the Bianjiadayuan Deposit, Inner Mongolia, NE China: Evidences from Fluid Inclusion, Stable (C-H-O) and Noble Gas Isotope Studies. Ore Geology Reviews, 2018, 101: 1-16

[37]

ZhaiD G, Williams-JonesA E, LiuJ J, et al.. Mineralogical, Fluid Inclusion, and Multiple Isotope (H-O-S-Pb) Constraints on the Genesis of the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China. Economic Geology, 2018, 113(6): 1359-1382

[38]

ZhangH Y, ZhaiD G, LiuJ J, et al.. Fluid Inclusion and Stable (H-O-C) Isotope Studies of the Giant Shuangjianzishan Epithermal Ag-Pb-Zn Deposit, Inner Mongolia, NE China. Ore Geology Reviews, 2019, 115: 103170

[39]

ZhangH Y The Studies on High-Intermediate Temperature Sn-Rb-Li-W and Intermediate-Low Temperature Cu-Zn-Ag Metallogenic Ore System at Weilasituo, Inner Mongolia, NE China, 2020 Beijing China University of Geosciences (Beijing) 1-141 (in Chinese with English Abstract)

[40]

ZhaoP L, YuanS D, Williams-JonesA E, et al.. Temporal Separation of W and Sn Mineralization by Temperature-Controlled Incongruent Melting of a Single Protolith: Evidence from the Wangxianling Area, Nanling Region, South China. Economic Geology, 2022, 117(3): 667-682

[41]

ZhaoQ Q, ZhaiD G, DouM X, et al.. Origin of Ag-Pb-Zn Mineralization at Huanaote, Inner Mongolia, NE China: Evidence from Fluid Inclusion, H-O-S-Pb and Noble Gas Isotope Studies. Ore Geology Reviews, 2023, 161: 105656

[42]

ZhaoQ Q, ZhaiD G, Williams-JonesA E, et al.. A Late Mesozoic Cu Mineralizing Event in the Eastern Central Asian Orogenic Belt, NE China: Implications from Geology and Geochronology of the Newly Discovered Zhalageamu Deposit. GSA Bulletin, 2024, 136(3/4): 1171-1184

[43]

ZhengY. Large-Scaled Structure-Alteration-Mineralization Mapping of the Hydrothermal Deposits: Basic Principle and Precautions. Earth Science, 2022, 47(10): 3603-3615 (in Chinese with English Abstract)

[44]

ZhuK Y, JiangS Y, SuH M, et al.. In Situ Geochemical Analysis of Multiple Generations of Sphalerite from the Weilasituo Sn-Li-Rb-Cu-Zn Ore Field (Inner Mongolia, Northeastern China): Implication for Critical Metal Enrichment and Ore-Forming Process. Ore Geology Reviews, 2021, 139: 104473

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

350

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/