A Submillimeter Iron Particle in Chang’e-6 Lunar Soil

Zhi Cao , Zhiyong Xiao , Yunhua Wu , Pan Yan , Yanxue Wu , Zongjun Ying , Zilei Chen , Suping Wu

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (5) : 2359 -2364.

PDF
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (5) : 2359 -2364. DOI: 10.1007/s12583-025-0183-8
Editorial
other

A Submillimeter Iron Particle in Chang’e-6 Lunar Soil

Author information +
History +
PDF

Cite this article

Download citation ▾
Zhi Cao, Zhiyong Xiao, Yunhua Wu, Pan Yan, Yanxue Wu, Zongjun Ying, Zilei Chen, Suping Wu. A Submillimeter Iron Particle in Chang’e-6 Lunar Soil. Journal of Earth Science, 2025, 36(5): 2359-2364 DOI:10.1007/s12583-025-0183-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cui Z X, Yang Q, Zhang Y Q. et al.. A Sample of the Moon’s Far Side Retrieved by Chang’e-6 Contains 2.83-Billion-Year-Old Basalt. Science, 2024, 386(6728): 1395-1399.

[2]

Day J M D. Metal Grains in Lunar Rocks as Indicators of Igneous and Impact Processes. Meteoritics & Planetary Science, 2020, 55(8): 1-15.

[3]

Duke M B. Metallic Iron in Basaltic Achondrites. Journal of Geophysical Research (1896–1977), 1965, 70(6): 1523-1527.

[4]

Friel J J, Goldstein J I. Metallic Phases in the Luna 24 Soil Samples. Geophysical Research Letters, 1977, 4(10): 481-483.

[5]

Fuchs L H, Olsen E. Composition of Metal in Type III Carbonaceous Chondrites and Its Relevance to the Source-Assignment of Lunar Metal. Earth and Planetary Science Letters, 1973, 18(3): 379-384.

[6]

Goldstein J I, Axon H J. Composition, Structure, and Thermal History of Metallic Particles from 3 Apollo 16 Soils, 65701, 68501, and 63501. 4th Lunar and Planetary Science Conference, 1973751-7754

[7]

Goldstein J I, Blau P J. Chemistry and Thermal History of Metal Particles in Luna 20 Soils. Geochimica et Cosmochimica Acta, 1973, 37(4): 847-855.

[8]

Goldstein J I, Yakowitz H. Metallic Inclusions and Metal Particles in the Apollo 12 Lunar Soil. Lunar and Planetary Science Conference Proceedings, 1971, 2: 177

[9]

Guo D J, Bao Y M, Liu Y. et al.. Geological Investigation of the Lunar Apollo Basin: From Surface Composition to Interior Structure. Earth and Planetary Science Letters, 2024, 646: 118986.

[10]

Irving A J, Steele I M, Smith J V. Lunar Noritic Fragments and Associated Diopside Veins. American Mineralogist: Journal of Earth and Planetary Materials, 1974, 59(9–10): 1062-1068

[11]

Li C L, Hu H, Yang M F. et al.. Nature of the Lunar Far-Side Samples Returned by the Chang’E-6 Mission. National Science Review, 2025, 11(11): nwae328.

[12]

Lindstrom M M, Marvin U B, Mittlefehldt D W. Apollo 15 Mg- and Fe-Norites: A Redefinition of the Mg-Suite Differentiation Trend. Lunar and Planetary Science Conference Proceedings, 1989, 19: 245-254

[13]

Liu X Y, Gu L X, Tian H C. et al.. First Classification of Iron Meteorite Fragment Preserved in Chang’e-5 Lunar Soils. Science Bulletin, 2024, 69(4): 554-561.

[14]

Longhi J. Effects of Fractional Crystallization and Cumulus Processes on Mineral Composition Trends of Some Lunar and Terrestrial Rock Series. Journal of Geophysical Research: Solid Earth, 1982, 87(S01): A54-A64.

[15]

Longhi J. A New View of Lunar Ferroan Anorthosites: Postmagma Ocean Petrogenesis. Journal of Geophysical Research: Planets, 2003, 108(E8): 5083.

[16]

Lovering J F. Electron Microprobe Analysis of the Metallic Phase in Basic Achondrites. Nature, 1964, 203(4940): 70.

[17]

Luo F L, Xiao Z Y, Wang Y C. et al.. The Production Population of Impact Craters in the Chang’E-6 Landing Mare. The Astrophysical Journal Letters, 2024, 974(2): L37.

[18]

Mehta S, Goldstein J I. Metallic Particles in the Glassy Constituents of Three Lunar Highland Samples 65315, 67435 and 78235. 11th Lunar and Planetary Science Conference, 19801713-17252

[19]

McCallum I S, Mathez E A. Petrology of Noritic Cumulates and a Partial Melting Model for the Genesis of Fra Mauro Basalts. Lunar and Planetary Science Conference Proceedings, 1975, 1: 395-414

[20]

McCallum I S, Mathez E A, Okamura F P. et al.. Petrology of Noritic Cumulates: Samples 78235 and 78238. Abstracts of the Lunar and Planetary Science Conference, 1975534-5366

[21]

Jolliff B L, Gillis J J, Haskin L A. et al.. Major Lunar Crustal Terranes: Surface Expressions and Crust-Mantle Origins. Journal of Geophysical Research: Planets, 2000, 105(E2): 4197-4216.

[22]

Papike J J. Chapter 7. Comparative Planetary Mineralogy: Chemistry of Melt-Deriyed Pyroxene, Feldspar, and Olivine. Planetary Materials, 1998, 36: 1-11

[23]

Papike J J, Karner J M, Shearer C K. Determination of Planetary Basalt parentage: A Simple Technique Using the Electron Microprobe. American Mineralogist, 2003, 88(2/3): 469-472.

[24]

Ringwood A E, Seifert S. Nickel-Cobalt Abundance Systematics and Their Bearing on Lunar Origin. Lunar Planetary Inst. Conf. on the Origin of the Moon, 1986October 13–16, 1984

[25]

Ryder G, Norman M D, Score R A. The Distinction of Pristine from Meteorite-Contaminated Highlands Rocks Using Metal Compositions. 11th Lunar and Planetary Science Conference, 1980471-4791

[26]

Sclar C B, Bauer J F. Shock-Induced Subsolidus Reduction-Decomposition of Orthopyroxene and Shock-Induced Melting in Norite 78235. Lunar and Planetary Science Conference Proceedings, 1975, 1: 799-820

[27]

Shearer C K, Papike J J. Magmatic Evolution of the Moon. American Mineralogist, 1999, 84(10): 1469-1494.

[28]

Shearer C K, Elardo S M, Petro N E. et al.. Origin of the Lunar Highlands Mg-Suite: An Integrated Petrology, Geochemistry, Chronology, and Remote Sensing Perspective. American Mineralogist, 2015, 100(1): 294-325.

[29]

Sist E, Černok A, Beinlich A. et al.. Investigating the Origin of Fe-Ni Metal and Sulfides in Shocked Apollo Mg-Suite Rocks. Europlanet Science Congress, 2024, 17: EPSC2024-1083

[30]

Smith J V, Steele I M. Lunar Mineralogy; a Heavenly Detective Story; Part II. American Mineralogist, 1976, 61(11–12): 1059-1116

[31]

Spudis P D, Gillis J J, Reisse R A. Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry. Science, 1994, 266(5192): 1848-1851.

[32]

Stolper E. Petrogenesis of Eucrite, Howardite and Diogenite Meteorites. Nature, 1975, 258(5532): 220-222.

[33]

Su B, Chen Y, Wang Z L. et al.. South Pole-Aitken Massive Impact 4.25 Billion Years Ago Revealed by Chang’e-6 Samples. National Science Review, 2025, 12(6): nwaf103.

[34]

Wahl W. The Brecciated Stony Meteorites and Meteorites Containing Foreign Fragments. Geochimica et Cosmochimica Acta, 1952, 2(2): 91-117.

[35]

Wang Z C, Li Y H, Li J W. et al.. Chemical Compositions of Chang’e-6 Lunar Soil and Substantial Addition of Noritic Crust Ejecta from Apollo Basin. Geology, 2025, 53(7): 557-561.

[36]

Wang Z L, Tian W, Wang W R. et al.. Genesis and Timing of KREEP-Free Lunar Mg-Suite Magmatism Indicated by the First Norite Meteorite Arguin 002. Communications Earth & Environment, 2025, 6: 170.

[37]

Warner P H. A Concisse Compilation of Petrologic Information on Possibly Pristine Nonmare Moon Rocks. American Mineralogist, 1993, 78(3–4): 360-376

[38]

Wieczorek M A, Weiss B P, Stewart S T. An Impactor Origin for Lunar Magnetic Anomalies. Science, 2012, 335(6073): 1212-1215.

[39]

Wu, Y., Yan, P., Pan, L., 2025. Petrological and Geochemical Modifications during Impact Melting and Cooling in Shocked Lunar Regolith: Insights from Heterogeneous Chang’E-5 Impact Melt-Bearing Particle. Journal of Earth Science, online first. https://doi.org/10.1007/s12583-024-0151-8

[40]

Xiong M C, Wu Y X, Yao W Q. et al.. The Formation Mechanisms of Np-Fe in Lunar Regolith: A Review. Materials, 2024, 17(23): 5866.

[41]

Yan P, Xiao Z Y, Wu Y H. et al.. Intricate Regolith Reworking Processes Revealed by Microstructures on Lunar Impact Glasses. Journal of Geophysical Research: Planets, 2022, 127(12): e2022JE007260.

[42]

Zhang M W, Fa W Z, Jia B J. Provenance and Evolution of Lunar Regolith at the Chang’e-6 Sampling Site. Nature Astronomy, 2025, 9: 813-823.

[43]

Zhang Q W L, Yang M-H, Li Q-L. et al.. Lunar Farside Volcanism 2.8 Billion Years Ago from Chang’e-6 Basalts. Nature, 2025, 643(8071): 356-360.

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/