Role of Suprapermafrost Groundwater Recharge in Dissolved Organic Carbon Dynamics of Thermokarst Lakes

Zeyong Gao , Fujun Niu , Dongliang Luo , Yibo Wang , Jing Luo , Guoan Yin , Yunhu Shang

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (6) : 2175 -2179.

PDF
Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (6) : 2175 -2179. DOI: 10.1007/s12583-024-2017-5
Letter

Role of Suprapermafrost Groundwater Recharge in Dissolved Organic Carbon Dynamics of Thermokarst Lakes

Author information +
History +
PDF

Cite this article

Download citation ▾
Zeyong Gao, Fujun Niu, Dongliang Luo, Yibo Wang, Jing Luo, Guoan Yin, Yunhu Shang. Role of Suprapermafrost Groundwater Recharge in Dissolved Organic Carbon Dynamics of Thermokarst Lakes. Journal of Earth Science, 2024, 35(6): 2175-2179 DOI:10.1007/s12583-024-2017-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BardgettR D, FreemanC, OstleN J. Microbial Contributions to Climate Change through Carbon Cycle Feedbacks. The ISME Journal, 2008, 2(8): 805-814

[2]

BiskabornB K, SmithS L, NoetzliJ, et al. . Permafrost is Warming at a Global Scale. Nature Communications, 2019, 10: 264

[3]

CallejaM L, Al-OtaibiN, MoránX A G. Dissolved Organic Carbon Contribution to Oxygen Respiration in the Central Red Sea. Scientific Reports, 2019, 9: 4690

[4]

ChangJ, ZhangF Y, WangG X, et al. . Spatiotemporal Heterogeneity of Suprapermafrost Groundwater Dynamic Processes in the Permafrost Region of the Qinghai-Tibet Plateau. CATENA, 2024, 239: 107911

[5]

ChenY T, ChengX, LiuA B, et al. . Tracking Lake Drainage Events and Drained Lake Basin Vegetation Dynamics across the Arctic. Nature Communications, 2023, 14: 7359

[6]

ConnollyC T, CardenasM B, BurkartG A, et al. . Groundwater as a Major Source of Dissolved Organic Matter to Arctic Coastal Waters. Nature Communications, 2020, 11: 1479

[7]

FedorovA N, GavrilievP P, KonstantinovP Y, et al. . Estimating the Water Balance of a Thermokarst Lake in the Middle of the Lena River Basin, Eastern Siberia. Ecohydrology, 2014, 7(2): 188-196

[8]

GaoZ Y, NiuF J, WangY B, et al. . Suprapermafrost Groundwater Flow and Exchange around a Thermokarst Lake on the Qinghai-Tibet Plateau, China. Journal of Hydrology, 2021, 593: 125882

[9]

GuoW, JiX Y, YuZ F, et al. . Research Progress and Challenges on Persistent Organic Pollutants in Lakes. Journal of Earth Science, 2024, 35(2): 729-736

[10]

HuG J, ZhaoL, WuT H, et al. . Spatiotemporal Variations and Regional Differences in Air Temperature in the Permafrost Regions in the Northern Hemisphere during 1980–2018. Science of the Total Environment, 2021, 791: 148358

[11]

HuJ, KangL Y, LiZ L, et al. . Photo-Produced Aromatic Compounds Stimulate Microbial Degradation of Dissolved Organic Carbon in Thermokarst Lakes. Nature Communications, 2023, 14: 3681

[12]

HuY L, MaR, SunZ Y, et al. . Groundwater Plays an Important Role in Controlling Riverine Dissolved Organic Matter in a Cold Alpine Catchment, the Qinghai-Tibet Plateau. Water Resources Research, 2023, 59(2): e2022WR032426

[13]

in’t ZandtM H, LiebnerS, WelteC U. Roles of Thermokarst Lakes in a Warming World. Trends in Microbiology, 2020, 28(9): 769-779

[14]

IPCC, et al. . Masson-DelmotteV, ZhaiP, PiraniA, et al. . Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2021 Cambridge Cambridge University Press

[15]

JiaoN Z, LuoT W, ChenQ R, et al. . The Microbial Carbon Pump and Climate Change. Nature Reviews Microbiology, 2024, 22: 408-419

[16]

JinH J, HuangY D, BenseV F, et al. . Permafrost Degradation and Its Hydrogeological Impacts. Water, 2022, 14(3): 372

[17]

LiZ J, LiZ X, FanX J, et al. . The Sources of Supra-Permafrost Water and Its Hydrological Effect Based on Stable Isotopes in the Third Pole Region. Science of the Total Environment, 2020, 715: 136911

[18]

LiY, WangG X, SunS Q, et al. . Methane Emissions from the Qinghai-Tibet Plateau Ponds and Lakes: Roles of Ice Thaw and Vegetation Zone. Global Biogeochemical Cycles, 2024, 38(4): e2024GB008106

[19]

LiuG M, ZhangB, WangL, et al. . Permafrost Region and Permafrost Area in Globe and China. Earth Science, 2023, 48(12): 4689-4698 (in Chinese with English Abstract)

[20]

LiuS Q, WangP, HuangQ W, et al. . Seasonal and Spatial Variations in Riverine DOC Exports in Permafrost-Dominated Arctic River Basins. Journal of Hydrology, 2022, 612: 128060

[21]

LuoJ, NiuF J, LinZ J, et al. . Abrupt Increase in Thermokarst Lakes on the Central Tibetan Plateau over the last 50years. CATENA, 2022, 217: 106497

[22]

MaQ, JinH J, YuC R, et al. . Dissolved Organic Carbon in Permafrost Regions: A Review. Science China Earth Sciences, 2019, 62(2): 349-364

[23]

MaR, SunZ Y, HuY L, et al. . Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau: Roles of Supraper-mafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 2017, 21(9): 4803-4823

[24]

MatveevA, LaurionI, VincentW F. Methane and Carbon Dioxide Emissions from Thermokarst Lakes on Mineral Soils. Arctic Science, 2018, 4(4): 584-604

[25]

MuC C, MuM, WuX D, et al. . High Carbon Emissions from Thermokarst Lakes and Their Determinants in the Tibet Plateau. Global Change Biology, 2023, 29(10): 2732-2745

[26]

O’DonnellJ A, AikenG R, WalvoordM A, et al. . Dissolved Organic Matter Composition of Winter Flow in the Yukon River Basin: Implications of Permafrost Thaw and Increased Groundwater Discharge. Global Biogeochemical Cycles, 2012, 26(4): GB0E06

[27]

OlefeldtD, GoswamiS, GrosseG, et al. . Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nature Communications, 2016, 7: 13043

[28]

OlidC, RodellasV, Rocher-RosG, et al. . Groundwater Discharge as a Driver of Methane Emissions from Arctic Lakes. Nature Communications, 2022, 13: 3667

[29]

PanX C, YuQ H, YouY H, et al. . Contribution of Supra-Permafrost Discharge to Thermokarst Lake Water Balances on the Northeastern Qinghai-Tibet Plateau. Journal of Hydrology, 2017, 555: 621-630

[30]

Sáez-SandinoT, García-PalaciosP, MaestreF T, et al. . The Soil Microbiome Governs the Response of Microbial Respiration to Warming across the Globe. Nature Climate Change, 2023, 13: 1382-1387

[31]

SchädelC, BaderM K F, SchuurE A G, et al. . Potential Carbon Emissions Dominated by Carbon Dioxide from Thawed Permafrost Soils. Nature Climate Change, 2016, 6: 950-953

[32]

SchaeferK, LantuitH, RomanovskyV E, et al. . The Impact of the Permafrost Carbon Feedback on Global Climate. Environmental Research Letters, 2014, 9(8): 085003

[33]

SerikovaS, PokrovskyO S, LaudonH, et al. . High Carbon Emissions from Thermokarst Lakes of Western Siberia. Nature Communications, 2019, 10: 1552

[34]

SpeetjensN J, BerghuijsW R, WagnerJ, et al. . Degradation of Ice-Wedge Polygons Leads to Increased Fluxes of Water and DOC. Science of the Total Environment, 2024, 920: 170931

[35]

van HuisstedenJ, BerrittellaC, ParmentierF J W, et al. . Methane Emissions from Permafrost Thaw Lakes Limited by Lake Drainage. Nature Climate Change, 2011, 1: 119-123

[36]

Walter AnthonyK, DaanenR, AnthonyP, et al. . Methane Emissions Proportional to Permafrost Carbon Thawed in Arctic Lakes since the 1950s. Nature Geoscience, 2016, 9: 679-682

[37]

Walter AnthonyK, Schneider von DeimlingT, NitzeI, et al. . 21st-Century Modeled Permafrost Carbon Emissions Accelerated by Abrupt Thaw beneath Lakes. Nature Communications, 2018, 9: 3262

[38]

WalvoordM A, KurylykB L. Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone Journal, 2016, 15(6): 1-20

[39]

WebbE E, LiljedahlA K. Diminishing Lake Area across the Northern Permafrost Zone. Nature Geoscience, 2023, 16: 202-209

[40]

WeiZ Q, DuZ H, WangL, et al. . Sentinel-Based Inventory of Thermokarst Lakes and Ponds across Permafrost Landscapes on the Qinghai-Tibet Plateau. Earth and Space Science, 2021, 8(11): e2021EA001950

[41]

WooM. Permafrost Hydrology, 2012 Berlin Heidelberg Springer-Verlag

[42]

YangG B, ZhengZ H, AbbottB W, et al. . Characteristics of Methane Emissions from Alpine Thermokarst Lakes on the Tibetan Plateau. Nature Communications, 2023, 14: 3121

[43]

YouY H, YuQ H, PanX C, et al. . Thermal Effects of Lateral Supra-Permafrost Water Flow around a Thermokarst Lake on the Qinghai-Tibet Plateau. Hydrological Processes, 2017, 31(13): 2429-2437

[44]

ZhaoL, SunZ, MaR, et al. . Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 2024, 49(3): 1177-1188 (in Chinese with English Abstract)

[45]

ZhaoY D, HuX. The Diversity and Function of Microbial Community in the Sediment and Terrestrial Area of Thermokarst Lakes. CATENA, 2023, 233: 107505

[46]

ZhuX Y, CampanaroS, TreuL, et al. . Metabolic Dependencies Govern Microbial Syntrophies during Methanogenesis in an Anaerobic Digestion Ecosystem. Microbiome, 2020, 8(1): 22

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/