A potentially New Early Ediacaran Glaciation

Zhongwu Lan, Magdalena H. Huyskens, Rong Ren, Qing-Zhu Yin

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (6) : 1810-1819.

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (6) : 1810-1819. DOI: 10.1007/s12583-024-1979-7
Geobiology

A potentially New Early Ediacaran Glaciation

Author information +
History +

Abstract

Multiple episodes of Neoproterozoic glaciation, namely the Beiyixi, Altungol, Tereeken and Hankalchough glaciations, are recorded in the Kuruktag area of northeastern Tarim Craton, NW China. The Tereeken glaciation was previously correlated with the global Marinoan glaciation based on sedimentary and chemostratigraphic features recorded in the cap dolostone immediately overlying the glaciogenic diamictite, as well as less precise radiometric age constraints. In this study, we obtained chemical-abrasion isotope dilution isotope ratio mass spectrometry (CA-ID-IRMS) U-Pb age of 624.03 ± 0.10 Ma from zircons extracted from a tuff lava interbeded within the diamictite of the Tereeken Formation, which suggests an Early Ediacaran age for the Tereeken glaciation. Such newly discovered Early Ediacaran glaciation in the Tarim region could have induced the negative δ13Ccarb excursions of 625–605 Ma by providing oxygen and other oxidants to invoke remineralization of a deep ocean dissolved organic carbon (DOC) reservoir.

Cite this article

Download citation ▾
Zhongwu Lan, Magdalena H. Huyskens, Rong Ren, Qing-Zhu Yin. A potentially New Early Ediacaran Glaciation. Journal of Earth Science, 2024, 35(6): 1810‒1819 https://doi.org/10.1007/s12583-024-1979-7

References

BingenB, GriffinW L, TorsvikT H, et al. . Timing of Late Neoproterozoic Glaciation on Baltica Constrained by Detrital Zircon Geochronology in the Hedmark Group, South-East Norway. Terra Nova, 2005, 17(3): 250-258
CrossRef Google scholar
BjerrumC J, CanfieldD E. Towards a Quantitative Understanding of the Late Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5542-5547
CrossRef Google scholar
BlackL P, KamoS L, AllenC M, et al. . Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 2004, 205(1/2): 115-140
CrossRef Google scholar
CalverC R, BlackL P, EverardJ L, et al. . U-Pb Zircon Age Constraints on Late Neoproterozoic Glaciation in Tasmania. Geology, 2004, 32(10): 893
CrossRef Google scholar
CondonD, ZhuM Y, BowringS, et al. . U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308(5718): 95-98
CrossRef Google scholar
ErwinD H, LaflammeM, TweedtS M, et al. . The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 2011, 334(6059): 1091-1097
CrossRef Google scholar
GaoL Z, WangZ Q, XuZ Q, et al. . A New Evidence from Zircon SHRIMP U-Pb Dating of the Neoproterozoic Diamictite in Quruqtagh Area, Tarim Basin, Xinjiang, China. Geological Bulletin of China, 2010, 29: 205-213 (in Chinese with English Abstract)
GaoZ, ZhuS. Precambrian Geology in Xinjiang, China, 1984 Urumuqi Xinjiang People’s Publishing House 151 (in Chinese)
GuoZ J, ZhangZ C, LiuS W, et al. . U-Pb Geochronological Evidence for the Early Precambrian Complex of the Tarim Craton, NW China. Acta Petrologica Sinica, 2003, 19: 537-542 (in Chinese with English Abstract)
HeJ W, ZhuW B, GeR F. New Age Constraints on Neoproterozoic Diamicites in Kuruktag, NW China and Precambrian Crustal Evolution of the Tarim Craton. Precambrian Research, 2014, 241: 44-60
CrossRef Google scholar
HiessJ, CondonD J, McLeanN, et al. . 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 2012, 335(6076): 1610-1614
CrossRef Google scholar
HoffmanP F, LiZ X. A Palaeogeographic Context for Neoproterozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 277(3/4): 158-172
CrossRef Google scholar
HuangK J, TengF Z, ShenB, et al. . Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 14904-14909
CrossRef Google scholar
HuangZ B, WangZ H, YangZ L. Comprehensive Study on Petroleum Geology in Kuruktag Area and Base Construction of Field Geology Investigation in Kuqa Area (First Volume), 2009 Korla Research Institute of Petroleum Exploration & Development of Tarim Oilfield Company 1-545 (in Chinese)
HuyskensM H, IizukaT, AmelinY. Evaluation of Colloidal Silicagels for Lead Isotopic Measurements Using Thermal Ionisation Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1439-1446
CrossRef Google scholar
HuyskensM H, ZinkS, AmelinY. Evaluation of Temperature-Time Conditions for the Chemical Abrasion Treatment of Single Zircons for U-Pb Geochronology. Chemical Geology, 2016, 438: 25-35
CrossRef Google scholar
JaffeyA H, FlynnK F, GlendeninL E, et al. . Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 1971, 4(5): 1889
CrossRef Google scholar
JiangG Q, KennedyM J, Christie-BlickN. Stable Isotopic Evidence for Methane Seeps in Neoproterozoic Postglacial Cap Carbonates. Nature, 2003, 426: 822-826
CrossRef Google scholar
KouX W, WangY, WeiW, et al. . The Neoproterozoic Altungol and Huangyanggou Formations in Tarim Plate: Recognized newly Glaciation and Inter-Glaciation?. Acta Petrologica Sinica, 2008, 24: 2863-2868 (in Chinese with English Abstract)
KroghT E. A Low-Contamination Method for Hydrothermal Decomposition of Zircon and Extraction of U and Pb for Isotopic Age Determinations. Geochimica et Cosmochimica Acta, 1973, 37(3): 485-494
CrossRef Google scholar
KumpulainenR A, HamiltonM A, SöderlundU, et al. . U-Pb Baddeleyite Age for the Ottfjället Dyke Swarm, Central Scandinavian Caledonides: New Constraints on Ediacaran Opening of the Iapetus Ocean and Glaciations on Baltica. GFF, 2021, 143(1): 40-54
CrossRef Google scholar
LamminenJ, AndersenT, NystuenJ P. Provenance and Rift Basin Architecture of the Neoproterozoic Hedmark Basin, South Norway Inferred from U-Pb Ages and Lu-Hf Isotopes of Conglomerate Clasts and Detrital Zircons. Geological Magazine, 2015, 152(1): 80-105
CrossRef Google scholar
LanZ W. WANCE: A Possibly Volcanism-Induced Ediacaran Carbon Isotope Excursion. Journal of Earth Science, 2022, 33(3): 778-788
CrossRef Google scholar
LanZ W, SanoY, YahagiT, et al. . An Integrated Chemostratigraphic (δ13C-δ18O-87Sr/86Sr- δ15N) Study of the Doushantuo Formation in Western Hubei Province, South China. Precambrian Research, 2019, 320: 232-252
CrossRef Google scholar
LanZ W, HuyskensM H, LuK, et al. . Toward Refining the Onset Age of Sturtian Glaciation in South China. Precambrian Research, 2020, 338: 105555
CrossRef Google scholar
LanZ W, HuyskensM H, Le HirG, et al. . Massive Volcanism may Have Foreshortened the Marinoan Snowball Earth. Geophysical Research Letters, 2022, 49(6): e2021GL097156
CrossRef Google scholar
LanZ W, WuS T, RobertsN M W, et al. . Geochronological and Geochemical Constraints on the Origin of Highly 13Ccarb-Depleted Calcite in Basal Ediacaran Cap Carbonate. Geological Magazine, 2022, 159(8): 1323-1334
CrossRef Google scholar
LiC, ChengM, ZhuM Y, et al. . Heterogeneous and Dynamic Marine Shelf Oxygenation and Coupled Early Animal Evolution. Emerging Topics in Life Sciences, 2018, 2(2): 279-288
CrossRef Google scholar
LiZ H, LiB, LiP, et al. . Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of Diorite in Heishishan Copper Polymetallic Deposit, East Kunlun. Earth Science, 2023, 48(12): 4465-4480 (in Chinese with English Abstract)
LiZ X, EvansD A D, HalversonG P. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 2013, 294: 219-232
CrossRef Google scholar
LongX P, YuanC, SunM, et al. . Reworking of the Tarim Craton by Underplating of Mantle Plume-Derived Magmas: Evidence from Neoproterozoic Granitoids in the Kuluketage Area, NW China. Precambrian Research, 2011, 187(1/2): 1-14
CrossRef Google scholar
LuS N, LiH K, ZhangC L, et al. . Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 2008, 160(1/2): 94-107
CrossRef Google scholar
LudwigK. Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel, 2012
MyrowP M, KaufmanA J. A newly Discovered Cap Carbonate above Varanger-Age Glacial Deposits in Newfoundland, Canada. Journal of Sedimentary Research, 1999, 69: 784-793
CrossRef Google scholar
MyrowP M, LambM P, EwingR C. Rapid Sea Level Rise in the Aftermath of a Neoproterozoic Snowball Earth. Science, 2018, 360(6389): 649-651
CrossRef Google scholar
NordsvanA R, BarhamM, CoxG, et al. . Major Shoreline Retreat and Sediment Starvation Following Snowball Earth. Terra Nova, 2019, 31(6): 495-502
CrossRef Google scholar
NorinE. Reports from the Scientific Expedition to the Northwestern Provinces of China under the Leadership of Dr. Sven Hedin, III. Geology, 1. Geology of Western Quruqtagh, Eastern Tien-Shan, 1937 Stockholm Bokförlags Aktiebolaget Thule 194
PierrehumbertR T. High Levels of Atmospheric Carbon Dioxide Necessary for the Termination of Global Glaciation. Nature, 2004, 429: 646
CrossRef Google scholar
PuJ P, BowringS A, RamezaniJ, et al. . Dodging Snowballs: Geochronology of the Gaskiers Glaciation and the First Appearance of the Ediacaran Biota. Geology, 2016, 44(11): 955-958
CrossRef Google scholar
RenR, GuanS W, ZhangS C, et al. . How did the Peripheral Subduction Drive the Rodinia Breakup: Constraints from the Neoproterozoic Tectonic Process in the Northern Tarim Craton. Precambrian Research, 2020, 339: 105612
CrossRef Google scholar
RichterS, EykensR, KühnH, et al. . New Average Values for the n (238U)/n(235U) Isotope Ratios of Natural Uranium Standards. International Journal of Mass Spectrometry, 2010, 295(1/2): 94-97
CrossRef Google scholar
RothmanD H, HayesJ M, SummonsR E. Dynamics of the Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8124-8129
CrossRef Google scholar
SchmitzM D, SchoeneB. Derivation of Isotope Ratios, Errors, and Error Correlations for U-Pb Geochronology Using 205Pb-235U-(233U)-Spiked Isotope Dilution Thermal Ionization Mass Spectrometric Data. Geochemistry, Geophysics, Geosystems, 2007, 8(8): Q08006
CrossRef Google scholar
SchragD P, HigginsJ A, MacDonaldF A, et al. . Authigenic Carbonate and the History of the Global Carbon Cycle. Science, 2013, 339(6119): 540-543
CrossRef Google scholar
VerbruggenA, AlonsoA, EykensR, et al. . Preparation and Certification of IRMM-3636, 2008 24
VillaI M, BonardiM L, De BièvreP, et al. . IUPAC-IUGS Status Report on the Half-Lives of 238U, 235U and 234U. Geochimica et Cosmochimica Acta, 2016, 172: 387-392
CrossRef Google scholar
WangJ S, JiangG Q, XiaoS H, et al. . Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 2008, 36(5): 347-350
CrossRef Google scholar
WangR M, ShenB, LangX G, et al. . A Great Late Ediacaran Ice Age. National Science Review, 2023, 10(8): nwad117
CrossRef Google scholar
WangR M, YinZ J, ShenB. A Late Ediacaran Ice Age: The Key Node in the Earth System Evolution. Earth-Science Reviews, 2023, 247: 104610
CrossRef Google scholar
WangW, ZhouC M, GuanC G, et al. . An Integrated Carbon, Oxygen, and Strontium Isotopic Studies of the Lantian Formation in South China with Implications for the Shuram Anomaly. Chemical Geology, 2014, 373: 10-26
CrossRef Google scholar
WangZ, WangJ S, SuessE, et al. . Silicified Glendonites in the Ediacaran Doushantuo Formation (South China) and Their Potential Paleoclimatic Implications. Geology, 2017, 45(2): 115-118
CrossRef Google scholar
XiaoS H, BaoH M, WangH F, et al. . The Neoproterozoic Quruqtagh Group in Eastern Chinese Tianshan: Evidence for a Post-Marinoan Glaciation. Precambrian Research, 2004, 130(1/2/3/4): 1-26
CrossRef Google scholar
XiaoS H, NarbonneG M, ZhouC M, et al. . Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects. Episodes, 2016, 39(4): 540-555
CrossRef Google scholar
XiaoS H, CuiH, KangJ Y, et al. . Using SIMS to Decode Noisy Stratigraphic δ13C Variations in Ediacaran Carbonates. Precambrian Research, 2020, 343: 105686
CrossRef Google scholar
XinH T, TianJ, TengX J, et al. . Petrology, Zircon Chronology and Geochemistry of the Late Silurian Ophiolitic Mélanges and the Baiyunshan Forearc Complex in the Central Beishan Orogenic Belt, NE China. Journal of Earth Science, 2023, 34(2): 444-455
CrossRef Google scholar
Xinjiang Bureau of Geology and Mineral Resources (XBGMR). Regional Geology of Xinjiang Uygur Autonomous Region, 1993 Beijing Geological Publishing House 841 (in Chinese with English Summary)
XuB, ZhengH F, YaoH T, et al. . C-Isotope Composition and Significance of the Sinian on the Tarim Plate. Chinese Science Bulletin, 2003, 48(4): 385-389
CrossRef Google scholar
XuB, XiaoS, ZouH, et al. . SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 2009, 168(3/4): 247-258
CrossRef Google scholar
YuanS, LiH, ZhangL P, et al. . Geochemical and Zircon Hf-O Isotopic Constraints on the Origin of Wulian A-Type Granite in Shandong Peninsula, Eastern China. Journal of Earth Science, 2022, 33(3): 609-622
CrossRef Google scholar
ZhangC L, LiZ X, LiX H, et al. . Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 2009, 35(2): 167-179
CrossRef Google scholar
ZhangC L, LiH K, SantoshM, et al. . Precambrian Evolution and Cratonization of the Tarim Block, NW China: Petrology, Geochemistry, Nd-Isotopes and U-Pb Zircon Geochronology from Archaean Gabbro-TTG-Potassic Granite Suite and Paleoproterozoic Metamorphic Belt. Journal of Asian Earth Sciences, 2012, 47: 5-20
CrossRef Google scholar
ZhangC L, LiH K. The Tarim Craton in the Northwest of China. International Geology Review, 2023, 65(4): 607-643
CrossRef Google scholar
ZhouC, BaoH, PengY, et al. . Timing the Deposition of 17O-Depleted Barite at the Aftermath of Nantuo Glacial Meltdown in South China. Geology, 2010, 38(10): 903-906
CrossRef Google scholar
ZhouC M, GuanC G, CuiH, et al. . Methane-Derived Authigenic Carbonate from the Lower Doushantuo Formation of South China: Implications for Seawater Sulfate Concentration and Global Carbon Cycle in the Early Ediacaran Ocean. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 461: 145-155
CrossRef Google scholar
ZhouC M, HuyskensM H, LangX G, et al. . Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 2019, 47(3): 251-254
CrossRef Google scholar
ZhouC M, YuanX L, XiaoS H, et al. . Ediacaran Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 2019, 62(1): 7-24
CrossRef Google scholar
ZhouG H, LuoT Y, ZhouM Z, et al. . A Ubiquitous Hydrothermal Episode Recorded in the Sheet-Crack Cements of a Marinoan Cap Dolostone of South China: Implication for the Origin of the Extremely 13C-Depleted Calcite Cement. Journal of Asian Earth Sciences, 2017, 134: 63-71
CrossRef Google scholar
ZhuG Y, ChenZ Y, ChenW Y, et al. . Revisiting to the Neoproterozoic Tectonic Evolution of the Tarim Block, NW China. Precambrian Research, 2021, 352: 106013
CrossRef Google scholar
ZhuM Y, LuM, ZhangJ M, et al. . Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 2013, 225: 7-28
CrossRef Google scholar
ZhuM Y. SunS, WangT. Review on Global Neoproterozoic Strata Research. Geology and Hydrocarbon Resources of the Middle–Upper Proterozoic in East China, 2016 Beijing Science Press 3-24 (in Chinese)

Accesses

Citations

Detail

Sections
Recommended

/