3D Coseismic Deformation and Fault Slip Model of the 2023 Kahramanmaraş Earthquake Sequence Constrained by GPS, ALOS-2 and Sentinel-1 Data

Chengyuan Bai , Wenbin Xu , Lei Zhao , Kai Sun , Lei Xie

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (2) : 812 -822.

PDF
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (2) : 812 -822. DOI: 10.1007/s12583-024-0146-5
Editorial

3D Coseismic Deformation and Fault Slip Model of the 2023 Kahramanmaraş Earthquake Sequence Constrained by GPS, ALOS-2 and Sentinel-1 Data

Author information +
History +
PDF

Cite this article

Download citation ▾
Chengyuan Bai, Wenbin Xu, Lei Zhao, Kai Sun, Lei Xie. 3D Coseismic Deformation and Fault Slip Model of the 2023 Kahramanmaraş Earthquake Sequence Constrained by GPS, ALOS-2 and Sentinel-1 Data. Journal of Earth Science, 2025, 36(2): 812-822 DOI:10.1007/s12583-024-0146-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AktugB, OzenerH, DogruA, et al.. Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. Journal of Geodynamics, 2016, 94: 1-12

[2]

BarbotS, LuoH, WangT, et al.. Slip Distribution of the February 6, 2023 MW7.8 and MW7.6, Kahramanmaraş, Turkey Earthquake Sequence in the East Anatolian Fault Zone. Seismica, 2023, 2(3): 1-17

[3]

BayrakE, YılmazŞ, SoftaM, et al.. Earthquake Hazard Analysis for East Anatolian Fault Zone, Turkey. Natural Hazards, 2015, 76(2): 1063-1077

[4]

BleteryQ, CavaliéO, NocquetJ M, et al.. Distribution of Interseismic Coupling along the North and East Anatolian Faults Inferred from InSAR and GPS Data. Geophysical Research Letters, 2020, 47(16): e2020GL087775

[5]

Blewitt, G., Hammond, W., Kreemer, C., 2018. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos, 99, https://doi.org/10.1029/2018eo104623

[6]

CakirZ, DoğanU, AkoğluA M, et al.. Arrest of the MW6.8 January 24, 2020 Elaziğ (Turkey) Earthquake by Shallow Fault Creep. Earth and Planetary Science Letters, 2023, 608: 118085

[7]

ChenC W, ZebkerH A. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1709-1719

[8]

ChenW K, RaoG, KangD J, et al.. Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 MW7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 2023, 34(2): 297-303

[9]

CunninghamW D, MannP. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society of London Special Publications, 2007, 290(1): 1-12

[10]

DumanT Y, EmreÖ. The East Anatolian Fault: Geometry, Segmentation and Jog Characteristics. Geological Society, London, Special Publications, 2013, 372(1): 495-529

[11]

FangN, SunK, HuangC, et al.. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 MS6.2 Jishishan Earthquake. Geomatics and Information Science of Wuhan University, 2024(in Chinese with English Abstract)

[12]

FialkoY, SandwellD, SimonsM, et al.. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit. Nature, 2005, 435(7040): 295-299

[13]

GaoH, LiaoM, FengG. An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion. Remote Sensing, 2021, 13(9): 1678

[14]

GoldsteinR M, WernerC L. Radar Interferogram Filtering for Geophysical Applications. Geophysical Research Letters, 1998, 25(21): 4035-4038

[15]

HeK F, WenY M, XuC J, et al.. Fault Geometry and Slip Distribution of the 2021 MW7.4 Maduo, China, Earthquake Inferred from InSAR Measurements and Relocated Aftershocks. Seismological Research Letters, 2022, 93(1): 8-20

[16]

HeL J, FengG C, XuW B, et al.. Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence from InSAR and Optical Data. Geophysical Research Letters, 2023, 50(17): e2023GL104693

[17]

HeP, WenY M, WangX H, et al.. The N-S Direction Strike-Slip Activities in the Pamir Hinterland under Oblique Convergence: The 2015 and 2023 Earthquakes. Geophysical Journal International, 2024, 238(2): 1150-1163

[18]

HuJ, LiZ W, DingX L, et al.. Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review. Earth-Science Reviews, 2014, 133: 1-17

[19]

JiaZ, JinZ Y, MarchandonM, et al.. The Complex Dynamics of the 2023 Kahramanmaraş, Turkey, MW7.8 - 7.7 Earthquake Doublet. Science, 2023, 381(6661): 985-990

[20]

JiangK, XuW B, XieL. Unwrap Intractable C-Band Coseismic Interferograms: An Improved SNAPHU Method with Range Offset Gradients as Prior Information. Journal of Geophysical Research: Solid Earth, 2024, 129(10): e2024JB028826

[21]

JinZ Y, FialkoY. Coseismic and Early Postseismic Deformation due to the 2021 M7.4 Maduo (China) Earthquake. Geophysical Research Letters, 2021, 48(21): e2021GL095213

[22]

JónssonS. Fault Slip Distribution of the 1999 MW7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389

[23]

KanekoY, FialkoY. Shallow Slip Deficit Due to Large Strike-Slip Earthquakes in Dynamic Rupture Simulations with Elasto-Plastic Off-Fault Response. Geophysical Journal International, 2011, 186(3): 1389-1403

[24]

KuskyT M, BozkurtE, MengJ N, et al.. Twin Earthquakes Devastate Southeast Türkiye and Syria: First Report from the Epicenters. Journal of Earth Science, 2023, 34(2): 291-296

[25]

LiZ W, XuW B, HuJ, et al.. Partial Geoscience Parameters Inversion from InSAR Observation. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475(in Chinese with English Abstract)

[26]

LomaxAPrecise, NLL-SSST-Coherence Hypocenter Catalog for the 2023 MW7.8 and MW7.6 SE Turkey Earthquake Sequence. v3.0, 2023[Data Set]

[27]

MaZ F, LiC L, JiangY, et al.. Space Geodetic Insights to the Dramatic Stress Rotation Induced by the February 2023 Turkey-Syria Earthquake Doublet. Geophysical Research Letters, 2024, 51(6): e2023GL107788

[28]

MelgarD, GengJ H, CrowellB W, et al.. Seismogeodesy of the 2014 MW6.1 Napa Earthquake, California: Rapid Response and Modeling of Fast Rupture on a Dipping Strike-Slip Fault. Journal of Geophysical Research: Solid Earth, 2015, 120(7): 5013-5033

[29]

Merryman BoncoriJ P. Measuring Coseismic Deformation with Spaceborne Synthetic Aperture Radar: A Review. Frontiers in Earth Science, 2019, 7: 16

[30]

NalbantS S, McCloskeyJ, SteacyS, et al.. Stress Accumulation and Increased Seismic Risk in Eastern Turkey. Earth and Planetary Science Letters, 2002, 195(3/4): 291-298

[31]

OkadaY. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154

[32]

Pousse-BeltranL, NissenE, BergmanE A, et al.. The 2020 MW6.8 Elazığ (Turkey) Earthquake Reveals Rupture Behavior of the East Anatolian Fault. Geophysical Research Letters, 2020, 47(13): e2020GL088136

[33]

ProvostF, KarabacakV, MaletJ P, et al.. High-Resolution Co-Seismic Fault Offsets of the 2023 Türkiye Earthquake Ruptures Using Satellite Imagery. Scientific Reports, 2024, 14(1): 6834

[34]

ReilingerR, McCluskyS, VernantP, et al.. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05411

[35]

ReitmanN G, BriggsR W, BarnhartW D, et al.. Fault Rupture Mapping of the 6 February 2023 Kahramanmaraş, Türkiye. Earthquake Sequence from Satellite Data, 2023

[36]

SimãoN M, NalbantS S, SunbulF, et al.. Central and Eastern Anatolian Crustal Deformation Rate and Velocity Fields Derived from GPS and Earthquake Data. Earth and Planetary Science Letters, 2016, 433: 89-98

[37]

WangK, FialkoY. Space Geodetic Observations and Models of Postseismic Deformation due to the 2005 M7.6 Kashmir (Pakistan) Earthquake. Journal of Geophysical Research: Solid Earth, 2014, 119(9): 7306-7318

[38]

Wang, K., Xu, X. H., Hu, Y., 2024. Kinematics of the 2023 Kahramanmaraş Earthquake Doublet: Biased Near-Fault Data and Shallow Slip Deficit. Seismological Research Letters, https://doi.org/10.1785/0220240062

[39]

WangR, ParolaiS, GeM, et al.. The 2011 MW9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data. Bulletin of the Seismological Society of America, 2013, 103(2B): 1336-1347

[40]

WeissJ R, WaltersR J, MorishitaY, et al.. High-Resolution Surface Velocities and Strain for Anatolia from Sentinel-1 InSAR and GNSS Data. Geophysical Research Letters, 2020, 47(17): e2020GL087376

[41]

WernerC, WegmüllerU, StrozziT, et al.. Gamma Sar and Interferometric Processing Software. Proceedings of the Ers-Envisat Symposium, Gothenburg, Sweden, 2000, 1620: 1620

[42]

WesselP, SmithW H F, ScharrooR, et al.. Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 2013, 94(45): 409-410

[43]

XuC J, ZhouL X, YinZ. Construction and Geodesy Slip Inversion Analysis of 2013 MS7.0 Lushan in China Earthquake’s Curved Fault Model. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1665-1672(in Chinese with English Abstract)

[44]

XuL, AokiY, WangJ Q, et al.. The 2023 MW7.8 and 7.6 Earthquake Doublet in Southeast Türkiye: Coseismic and Early Postseismic Deformation, Faulting Model, and Potential Seismic Hazard. Seismological Research Letters, 2024, 95(2A): 562-573

[45]

XuW B, FengG C, MengL S, et al.. Transpressional Rupture Cascade of the 2016 MW7.8 Kaikoura Earthquake, New Zealand. Journal of Geophysical Research: Solid Earth, 2018, 123(3): 2396-2409

[46]

XuW B, LiuX G, BürgmannR, et al.. Space Geodetic Evidence of Basement-Involved Thick-Skinned Orogeny and Fault Frictional Heterogeneity of the Papuan Fold Belt, Papua New Guinea. Journal of Geophysical Research: Solid Earth, 2022, 127(8): e2022JB024227

[47]

XuX H, TongX P, SandwellD T, et al.. Refining the Shallow Slip Deficit. Geophysical Journal International, 2016, 204(3): 1867-1886

[48]

ZhangY J, TangX W, LiuD C, et al.. Geometric Controls on Cascading Rupture of the 2023 Kahramanmaraş Earthquake Doublet. Nature Geoscience, 2023, 16: 1054-1060

[49]

ZhaoL, XuW, XieL, et al.. Fault Geometry and Low Frictional Control of the Near-Field Postseismic Deformation of the 2021 MW7.3 Maduo Earthquake. Tectonophysics, 2023, 863: 230000 in Chinese with English Abstract)

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

242

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/