Magmatic to Hydrothermal Evolution of Bianjiadayuan Ag-Pb-Zn-Sn Deposit, NE China: A Quartz Texture and Trace Elements Study
Xin Wang , Nan Qi , Xinyou Zhu , Xi-Heng He , Haowei Gu , Xiaohua Deng
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (4) : 1493 -1504.
Magmatic to Hydrothermal Evolution of Bianjiadayuan Ag-Pb-Zn-Sn Deposit, NE China: A Quartz Texture and Trace Elements Study
Quartz trace elements are extensively employed in studying magmatic evolution, fluid evolution, and metal enrichment. The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatic-hydrothermal system in northeastern China, however, studies on its complex magmatic-hydrothermal evolution are limited. This study investigates the quartz from the Bianjiadayuan deposit to gain insight into the physicochemical evolution of mineralization using cathodoluminescence (CL) textures and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of quartz. Five types quartz (Q1 to Q5) were identified. From Q1 in quartz porphyry to Q5 in Ag-Pb-Zn veins, the CL intensity and Ti content gradually decreases, and Ge, Ge/Ti, and Al/Ti ratios increase, indicating a temperature decline from magmatic to hydrothermal stages. The Sb content shows an opposite trend to Ti content, correlating positively with Ge content in quartz, suggesting that Sb content could also be temperature-dependent. These trace elements in quartz indicate cooling is critical for Ag mineralization. Furthermore, quartz phenocryst (Q1) from the quartz porphyry shows low Al/Ti (mostly < 4) and Ge/Ti ratios (< 0.04), suggesting a low degree of magmatic evolution. The Sb content in Q5 from Ag-Pb-Zn-quartz veins (> 1 ppm, mostly tens of ppm) is notably higher compared to quartz in other lithologies including Sn-bearing quartz veins (< 1 ppm), suggesting that Sb contents can serve as an effective indicator of Ag mineralization.
quartz / trace elements / Ag mineralization / Ag-Pb-Zn-Sn deposit / Bianjiadayuan
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature
/
| 〈 |
|
〉 |