Age and Petrogenesis of the newly Discovered Early Permian Granite in the Kumtor Gold Field, Kyrgyz Tien-Shan

Kyiazbek Asilbekov , Rustam Orozbaev , Etienne Skrzypek , Christoph Hauzenberger , Elena Ivleva , Daniela Gallhofer , Jian-Feng Gao , Nikolay Pak , Anatoliy Shevkunov , Anatoliy Bashkirov , Aizat Zhaanbaeva

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (3) : 1090 -1108.

PDF
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (3) : 1090 -1108. DOI: 10.1007/s12583-024-0085-1
Petrology and Mineral Deposits

Age and Petrogenesis of the newly Discovered Early Permian Granite in the Kumtor Gold Field, Kyrgyz Tien-Shan

Author information +
History +
PDF

Abstract

Permian intrusions are widespread in the Middle and Southern Tien-Shan, with fewer occurrences in the Northern Tien-Shan. Notably, many of these intrusions are spatially associated with a variety of ore deposits, indicating a significant link between magmatic activity and mineralization processes in these areas. We studied granite samples recently recovered from drilling in the Kumtor gold field to evaluate their potential relationships with gold mineralization. The major and trace element geochemistry, zircon U-Pb age and Hf isotope data for this so-called Kumtor granite are reported. The Kumtor granite is metaluminous to peraluminous and belongs to the high-K and calc-alkaline series with I-type geochemical characteristics. The relatively high K2O and Na2O concentrations and low high field strength elements (HFSE) and heavy rare earth elements (HREE), the presence of biotite within these I-type granites, together with their low zircon saturation temperatures (731–779 °C), suggest that they were likely derived from a hydrous source formed by dehydration melting of mica-bearing, medium- to high-K metabasaltic rocks. The zircon U-Pb dating results indicate that the Kumtor granite intruded at 293 ± 1.7 Ma, which is consistent with the age range of other Middle Tien-Shan granitoids. The zircon Hf isotopic composition is ε Hf(t) = −7.56 to −5.05, indicating an ancient (1.39 to 1.52 Ga) crustal origin. Petrographical, geochemical and geochronological data indicate that the Kumtor granite is similar to leucogranites of the Terekty Complex. These results indicate that the Kumtor granite was emplaced in the Early Permian in a post-collision setting and may have temporal and genetic relationships with gold mineralization.

Keywords

Kyrgyz Tien-Shan / Kumtor gold deposit / I-type granite / U-Pb geochronology / Hf isotopes / ore deposits / geochemistry

Cite this article

Download citation ▾
Kyiazbek Asilbekov, Rustam Orozbaev, Etienne Skrzypek, Christoph Hauzenberger, Elena Ivleva, Daniela Gallhofer, Jian-Feng Gao, Nikolay Pak, Anatoliy Shevkunov, Anatoliy Bashkirov, Aizat Zhaanbaeva. Age and Petrogenesis of the newly Discovered Early Permian Granite in the Kumtor Gold Field, Kyrgyz Tien-Shan. Journal of Earth Science, 2025, 36(3): 1090-1108 DOI:10.1007/s12583-024-0085-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbeleiraA, AnsdellK, HeamanL. U-Pb and Nd Isotope Constraints on the Evolution of the Tien Shan, Kumtor Region, Kyrgyzstan. Geological Society of America Abstracts with Programs, 2000, 32(7): A-32

[2]

AlekseievD V, DegtyarevK E, KotovA B, et al.. Late Paleozoic Subductional and Collisional Igneous Complexes in the Naryn Segment of the Middle Tien Shan (Kyrgyzstan). Doklady Earth Sciences, 2009, 427(1): 760-763

[3]

AlexeievD V, BiskeY S, DjenchuraevaA V, et al.. Late Carboniferous (Kasimovian) Closure of the South Tianshan Ocean: No Triassic Subduction. Journal of Asian Earth Sciences, 2019, 173: 54-60

[4]

BakirovA B, Ges’M D, JenchuraevaR D, et al. Geodynamika i Orudenenie Tian-Shanya (Kyrgyzstan), 2014 Bishkek Ilim 280

[5]

BiskeY S Paleozoiskaya Struktura i Istoriya Yujnogo Tian-Shanya, 1996 St. Petersburg S.-Peterburg University Publishing 190

[6]

Blichert-ToftJ. The Hf Isotopic Composition of Zircon Reference Material 91500. Chemical Geology, 2008, 253(3/4): 252-257

[7]

BoninB. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 2007, 97(1/2): 1-29

[8]

BouvierA, VervoortJ D, PatchettP J. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 2008, 273(1/2): 48-57

[9]

ChappellB W, WhiteA J R BrownP E, ChappellB W. I- and S-Type Granites in the Lachlan Fold Belt. The Second Hutton Symposium on the Origin of Granites and Related Rocks, 1992 1-26

[10]

CharvetJ, ShuL S, Laurent-CharvetS. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 2007, 30(3): 162-186

[11]

ChuN C, TaylorR N, ChavagnacV, et al.. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 2002, 17(12): 1567-1574

[12]

ClemensJ D. S-Type Granitic Magmas—Petrogenetic Issues, Models and Evidence. Earth-Science Reviews, 2003, 61(1/2): 1-18

[13]

De GraveJ, GlorieS, BuslovM M, et al.. The Thermo-Tectonic History of the Song-Kul Plateau, Kyrgyz Tien Shan: Constraints by Apatite and Titanite Thermochronometry and Zircon U/Pb Dating. Gondwana Research, 2011, 20(4): 745-763

[14]

De la RocheH, LeterrierJ, GrandclaudeP, et al.. A Classification of Volcanic and Plutonic Rocks Using R 1 R 2-Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 1980, 29(3/4): 183-210

[15]

DolgopolovaA, SeltmannR, KonopelkoD, et al.. Geodynamic Evolution of the Western Tien Shan, Uzbekistan: Insights from U-Pb SHRIMP Geochronology and Sr-Nd-Pb-Hf Isotope Mapping of Granitoids. Gondwana Research, 2017, 47: 76-109

[16]

FeldsteinS N, LangeR A. Pliocene Potassic Magmas from the Kings River Region, Sierra Nevada, California: Evidence for Melting of a Subduction-Modified Mantle. Journal of Petrology, 1999, 40(8): 1301-1320

[17]

FisherC M, HancharJ M, SamsonS D, et al.. Synthetic Zircon Doped with Hafnium and Rare Earth Elements: A Reference Material for in situ Hafnium Isotope Analysis. Chemical Geology, 2011, 286(1/2): 32-47

[18]

FrostB R, FrostC D. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 2008, 49(11): 1955-1969

[19]

GaoJ, LongL L, KlemdR, et al.. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 2009, 98(6): 1221-1238

[20]

GhesM D Terrane Structure and Geodynamic Evolution of the Caledonides of Tian-Shan, 2008 Bishkek Altyn Tamga Publishing House 158

[21]

GlorieS, De GraveJ, BuslovM M, et al.. Multi-Method Chronometric Constraints on the Evolution of the Northern Kyrgyz Tien Shan Granitoids (Central Asian Orogenic Belt): From Emplacement to Exhumation. Journal of Asian Earth Sciences, 2010, 38(3/4): 131-146

[22]

GlorieS, De GraveJ, BuslovM M, et al.. Tectonic History of the Kyrgyz South Tien Shan (Atbashi-Inylchek) Suture Zone: The Role of Inherited Structures during Deformation-Propagation. Tectonics, 2011, 30(6): 2011TC002949

[23]

HorstwoodM S A, KošlerJ, GehrelsG, et al.. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology—Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research, 2016, 40(3): 311-332

[24]

IvanovS M, AnsdellK M, MelroseD L BucciL A, MairJ L. Ore Texture and Stable Isotope Constraints on Ore Deposition Mechanisms at the Kumtor Lode Gold Deposit. Gold in 2000, 2000 Littleton Society of Economic Geologists 47-52

[25]

IvlevaE, PakN. Model of the Formation of the Super-Large Gold Deposit Kumtor in Central Asia. Proceedings of International Symposium on Giant Gold Deposits of Central Asia, 2014 107-110

[26]

IvlevaE A, PakN T, AsilbekovK A, et al.. Gold Mineralization Associated with Permian Magmatism in the Eastern Part of Southern and Middle Tien Shan (Kyrgyzstan). Vestnik of the Kyrgyz-Russian Slavic University, 2022, 22(4): 180-191

[27]

JacksonS E, PearsonN J, GriffinW L, et al.. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 2004, 211(1/2): 47-69

[28]

JenchuraevaR, AsilbekovK, JumagulovU. A-Granitoids of the Eastern Tien-Shan and Their Ore Potential (Kyrgyzstan). Proc. International Conference Dedicated to the 100th Anniversary of Acad. M. M. Adyshev. Institute of Geology NAS KR, Bishkek, 2015 89-95

[29]

JenchuraevaR, PakN, NikonorovV, et al. Gold Deposits of Kyrgyzstan, 2020 Bishkek Ilim 494

[30]

KingP L, WhiteA J R, ChappellB W, et al.. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 1997, 38(3): 371-391

[31]

KonopelkoD, BiskeG, SeltmannR, et al.. Hercynian Post-Collisional A-Type Granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 2007, 97(1/2): 140-160

[32]

KonopelkoD, BiskeG, SeltmannR, et al.. Deciphering Caledonian Events: Timing and Geochemistry of the Caledonian Magmatic Arc in the Kyrgyz Tien Shan. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 131-141

[33]

KonopelkoD, SeltmannR, BiskeG, et al.. Possible Source Dichotomy of Contemporaneous Post-Collisional Barren I-Type versus Tin-Bearing A-Type Granites, Lying on Opposite Sides of the South Tien Shan Suture. Ore Geology Reviews, 2009, 35(2): 206-216

[34]

KonopelkoD, BiskeG, SeltmannR, et al.. Age and Petrogenesis of the Neoproterozoic Chon-Ashu Alkaline Complex, and a New Discovery of Chalcopyrite Mineralization in the Eastern Kyrgyz Tien Shan. Ore Geology Reviews, 2014, 61: 175-191

[35]

KonopelkoD, WildeS A, SeltmannR, et al.. Early Permian Intrusions of the Alai Range: Understanding Tectonic Settings of Hercynian Post-Collisional Magmatism in the South Tien Shan, Kyrgyzstan. Lithos, 2018, 302: 405-420

[36]

KorobeinikovA. Mantle Magma-Thermofluid-Dynamic and Intracrustal Granitoid-Hydrothermal-Matasomatic Gold-Bearing Systems. Proceedings of the Tomsk Polytechnic University, 2007, 311: 36-45

[37]

KryazhevS Genetic Models and Criteria for Forecasting Gold Deposits in Carbonaceous-Terrigenous Complexes, 2017 Moscow Central Research Geological Prospecting Institute of Non-Ferrous and Precious Metals 288 (in Russian)

[38]

KrönerA, AlexeievD V, KovachV P, et al.. Zircon Ages, Geochemistry and Nd Isotopic Systematics for the Palaeoproterozoic 2.3−1.8 Ga Kuilyu Complex, East Kyrgyzstan—The Oldest Continental Basement Fragment in the Tianshan Orogenic Belt. Journal of Asian Earth Sciences, 2017, 135: 122-135

[39]

KurbanovN K KurbanovN K. Geological and Genetic Models of the Formation of Gold Deposits in Carbonaceous-Terrigenous Complexes. Ore Potential of Sedimentary Complexes, 1988 Leningrad Nauka 138-147

[40]

Le MaitreR W, StreckeisenA, ZanettinB, et al. Igneous Rocks: A Classification and Glossary of Terms, 2002 New York Cambridge University Press 254

[41]

LiuC S, ChenX M, ChenP R, et al.. Subdivision, Discrimination Criteria and Genesis for a Type Rock Suites. Geological Journal of China Universities, 2003, 9(4): 573-591 (in Chinese with English Abstract)

[42]

LomizeM G, DeminaL I, ZarshchikovA A. The Kyrgyz-Terskei Paleooceanic Basin, Tien Shan. Geodynamics, 1997, 31(6): 463-482

[43]

ManiarP D, PiccoliP M Tectonic Discrimination of Granitoids, 1989, 101(5): 635-643

[44]

MaoJ, KonopelkoD, SeltmannR, et al.. Postcollisional Age of the Kumtor Gold Deposit and Timing of Hercynian Events in the Tien Shan, Kyrgyzstan. Economic Geology, 2004, 99(8): 1771-1780

[45]

MikolaichukA, KurenkovK, DegtyarevV, et al.. Northern Tien-Shan, Main Stages of Geodynamic Evolution in the Late Precambrian and Early Palaeozoic. Geotectonics, 1997, 31(6): 445-462

[46]

MorelliR, CreaserR A, SeltmannR, et al.. Age and Source Constraints for the Giant Muruntau Gold Deposit, Uzbekistan, from Coupled Re-Os-He Isotopes in Arsenopyrite. Geology, 2007, 35(9): 795-798

[47]

NasdalaL, HofmeisterW, NorbergN, et al.. Zircon M257—A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 2008, 32(3): 247-265

[48]

NikonorovV, KaraevY, BorisovF, et al. Gold of Kyrgyzstan. Book 1: Geology. Localization conditions, 2004 Bishkek Nasi 271

[49]

PakN. Large Gold Deposits in the Black Shale Strata of the Tien Shan. Proc. Rudogenez, 2008 Miass-Ekaterinburg Sbornik Nauchnyh Statei 235-238

[50]

PakN, IvlevaE. Super-Large Gold Deposits in the Black Shale Strata of Central Asia. Proc. Petrology and Minerageny of Central Asia, 2015 Dushanbe Donish 94-101

[51]

PatchettJ P, KouvoO, HedgeC E, et al.. Evolution of Continental Crust and Mantle Heterogeneity: Evidence from Hf Isotopes. Contributions to Mineralogy and Petrology, 1982, 78(3): 279-297

[52]

Patino DouceA E. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline. Granitoids, 1997, 25(8): 743-746

[53]

PatonC, WoodheadJ D, HellstromJ C, et al.. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q0AA06

[54]

PatonC, HellstromJ, PaulB, et al.. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508

[55]

PearceJ A, HarrisN B W, TindleA G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25(4): 956-983

[56]

PottsP J, KaneJ S. International Association of Geoanalysts Certificate of Analysis: Certified Reference Material OU-6 (Penrhyn Slate). Geostandards and Geoanalytical Research, 2005, 29(2): 233-236

[57]

RafailovichM S, MizernayaM A, DyachkovB A Large Gold Deposits in Black Shale Strata: Conditions of Formation, Signs of Similarity, 2011 Almaty Luxe Media Group 272

[58]

RobertsM P, ClemensJ D. Origin of High-Potassium, Calc-Alkaline, I-Type. Granitoids, 1993, 21(9): 825-828

[59]

SakievK S Conditions of Metamorphism of Tien Shan Ophiolites, 2002 Bishkek Institute of Geology NAS KR 310 (in Russian)

[60]

SangM, XiaoW J, BakirovA, et al.. Oblique Wedge Extrusion of UHP/HP Complexes in the Late Triassic: Structural Analysis and Zircon Ages of the Atbashi Complex, South Tianshan, Kyrgyzstan. International Geology Review, 2017, 59(10): 1369-1389

[61]

SatybaevM, DingL, TakasuA, et al.. Petrology of Metamorphic Rocks from the Atbashy Complex, Southern Tien-Shan, Kyrgyzstan. Geoscience Frontiers, 2018, 9(6): 1795-1807

[62]

Şengö’rA M C, Natal’inB A AnY, HarrisonT M. Paleotectonics of Asia: Fragments of a Synthesis. The Tectonic Evolution of Asia, 1996 486-640

[63]

SeltmannR, KonopelkoD, BiskeG, et al.. Hercynian Post-Collisional Magmatism in the Context of Paleozoic Magmatic Evolution of the Tien Shan Orogenic Belt. Journal of Asian Earth Sciences, 2011, 42(5): 821-838

[64]

SeltmannR, GoldfarbR J, ZuB, et al.. Chapter 24: Muruntau, Uzbekistan: The World’s Largest Epigenetic Gold Deposit. Geology of the World’s Major Gold Deposits and Provinces, 2020 497-521

[65]

ShayakubovT S, TsoiR V, GolovanovI M, et al.. Muruntau Superdeep Well. Sovetskaya Geologiya, 1991, 10: 10-20

[66]

ShevkunovA G, GudaA A, SkoryninaA A, et al.. Studies of Mineral Composition of Ores of the Kumtor Deposit (Central Tien Shan) by QXRD and XRF Methods. Mineralogy, 2022, 8(3): 79-101

[67]

SissonT W, RatajeskiK, HankinsW B, et al.. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661

[68]

SkjerlieK P, JohnstonA D. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites. Journal of Petrology, 1993, 34(4): 785-815

[69]

SlámaJ, KošlerJ, CondonD J, et al.. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 2008, 249(1/2): 1-35

[70]

SöderlundU, PatchettP J, VervoortJ D, et al.. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324

[71]

SolomovichL I. K-Ar and Rb-Sr Isotope Analysis of Granites from the South Tien Shan. Kyrgyz Mining and Metallurgical Institute Bulletin, 1996, 1: 32-41 (in Russian)

[72]

SolomovichL I, TrifonovB A. Postcollisional Granites in the South Tien Shan Variscan Collisional Belt, Kyrgyzstan. Journal of Asian Earth Sciences, 2002, 21(1): 7-21

[73]

SolomovichL I, TrifonovB A. Rapakivi Granites within Phanerozoic Collisional Orogens as a Possible Consequence of Continental Subduction and Following Exhumation of the Precambrian Crust: Evidences from the Permian Jangart Rapakivi in South Tien Shan Collisional Belt, Eastern Kyrgyzstan. Journal of Asian Earth Sciences, 2014, 96: 332-343

[74]

SolomovichL I, TrifonovB A, SabelnikovS E. Geology and Mineralization of the Uchkoshkon Tin Deposit Associated with a Breccia Pipe, Eastern Kyrgyzstan. Ore Geology Reviews, 2012, 44: 59-69

[75]

SunS S, McDonoughW F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345

[76]

ThompsonM, PottsP J, KaneJ S, et al.. GeoPT5. An International Proficiency Test for Analytical Geochemistry Laboratories—Report on Round 5. Geostandards Newsletter, 2000, 24(1): E1-E28

[77]

TrifonovB A, SolomovichL I. Metallogeny of the Saryjaz Ore District, Eastern Kyrgyz Tien Shan. Ore Geology Reviews, 2018, 99: 380-397

[78]

TursungazievB T, PetrovO V, ZubkovV P, et al. Geological Map of Kyrgyz Republic, 1: 500 000, 2008 St. Petersburg VSEGEI

[79]

VervoortJ D, PatchettP J, SöderlundU, et al.. Isotopic Composition of Yb and the Determination of Lu Concentrations and Lu/Hf Ratios by Isotope Dilution Using MC-ICPMS. Geochemistry, Geophysics, Geosystems, 2004, 5(11): Q11002

[80]

VervoortJ D, KempA I, FisherC M. Hf Isotope Constraints on Evolution of the Depleted Mantle and Growth of Continental Crust. AGU Fall Meeting Abstracts, 2018 2018AGUFM.V23A.07V

[81]

WangR K, ZhaoX B, XueC J, et al.. Petrogenesis of the U-Rich Permian Akkulen Syenite Intrusion, Tien Shan, Kyrgyzstan: Insights into Its Magmatic Evolution and Geodynamic Setting. International Geology Review, 2024, 66(12): 2269-2290

[82]

WindleyB F, AllenM B, ZhangC, et al.. Paleozoic Accretion and Cenozoic Redeformation of the Chinese Tien Shan Range, Central Asia. Geology, 1990, 18(2): 128-131

[83]

WindleyB F, AlexeievD, XiaoW J, et al.. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 2007, 164(1): 31-47

[84]

WhalenJ B, CurrieK L, ChappellB W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419

[85]

WoodheadJ D, HergtJ M. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for in situ Hf Isotope Determination. Geostandards and Geoanalytical Research, 2007, 29(2): 183-195

[86]

WatsonE B, HarrisonT M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 1983, 64(2): 295-304

[87]

XiaoW J, WindleyB F, BadarchG, et al.. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 2004, 161(3): 339-342

[88]

XueC J, ZhaoX B, MoX X, et al.. Asian Gold Belt in Western Tianshan and Its Dynamic Setting, Metallogenic Control and Exploration. Earth Science Frontiers, 2014, 21(5): 128-155

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

606

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/