What Controls the Distribution of Ore Veins in Quartz Vein-Type Tungsten Deposits: Constrains from Fan-Shaped Mineralization in SE China
Gui-Cong Fang , Deng-Hong Wang , Fu-Qiang Yang , Zhan-Xu Ni , Chang-Shuai Huang , Ping Wang , Meng Feng , Zuo-Hai Feng
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (5) : 2023 -2037.
What Controls the Distribution of Ore Veins in Quartz Vein-Type Tungsten Deposits: Constrains from Fan-Shaped Mineralization in SE China
Quartz vein-type tungsten deposits are a common W deposit type. Their ore vein distribution was previously considered to be controlled by regional horizontal tectonic stress. In this paper, 14 tungsten deposits with fan-shaped mineralization in SE China are summarized, and the relations between their ore veins and granite and the ore-forming structural stress field are analyzed. These deposits have a post-magmatic hydrothermal genesis and involve the formation of two sets of veins with similar strike and opposite dips at the top of the ore-causative granite bodies, forming a vertical fan-shaped profile. Their ore veins were coeval with the underlying granite bodies, and generally extend along the long axis of the granite. In such fan-shaped ore formation, the stress is highly focused at the top of the granite and gradually weakens outward. The maximum principal stress (σ1) is perpendicular to the granite contact surface, and radiates outward from the pluton. Meanwhile, the minimum principal stress (σ3) forms an arc-shaped band parallel to the contact surface. Our findings, together with published numerical modeling indicate that the emplacement dynamics of granitic magma (rather than regional horizontal tectonic stress) are essential controls on the distribution of ore veins in quartz vein-type tungsten deposits.
quartz vein-type tungsten deposit / fan-shaped mineralization / ore-forming structural stress / emplacement dynamic / granite / SE China / mineral deposits / geochemistry
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
Nanling Tungsten Ore Team of the Metallurgical Department (NTOT). On the Metallogenic Regularity of Tungsten Deposits in Nanling and its Adjacent Areas in China. Geology and Exploration, 1979, 6: 18-28(in Chinese with English Abstract) |
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature
/
| 〈 |
|
〉 |