Lithium Isotopic Fractionation in Minerals from Pegmatites: Perspective of Crystal Chemistry

Shan-Ke Liu, Ben-Xun Su

Journal of Earth Science ›› 2024

Journal of Earth Science ›› 2024 DOI: 10.1007/s12583-024-0037-9
Article

Lithium Isotopic Fractionation in Minerals from Pegmatites: Perspective of Crystal Chemistry

Author information +
History +

Abstract

Lack of information regarding lithium (Li) crystal chemistry in numerous minerals, especially those containing trace amounts of Li (ranging from a few to tens of ppm), limits our understanding of Li isotopic fractionation in pegmatites. In this study, we examined the Li isotopic composition and Li content in various Li-poor (e.g., quartz or feldspar) together with Li-rich (sopdumene or lepidolite) mineral phases within granitic pegmatites. We compiled a comprehensive dataset, encompassing a broad spectrum of Li contents (ranging from a few to tens of thousands of ppm) and Li isotopic values (−8‰ to 41‰). The minerals exhibit distinct Li isotopic signatures. Specifically, elbaite and beryl show the highest values, while biotite displays a negative average. Compared to individual minerals, whole rocks demonstrate lower Li isotopic values, with pegmatites exhibiting the highest and non-granitic pegmatite wall rocks showing the lowest. Our study also uncovers a clear “V”. shape relationship between Li isotopic values and logarithm of Li contents, with different mineral groups occupying specific regions within this shape. Furthermore, a significant correlation was observed between average Li isotopic values and Li-O (OH, F) bond lengths in various minerals. These discoveries underscore the crucial role of crystal chemistry in shaping the Li isotopic behavior in pegmatites from a statistical perspective.

Keywords

Li isotopic fractionation / Li content / bond length / pegmatite / crystal chemistry / minerals

Cite this article

Download citation ▾
Shan-Ke Liu, Ben-Xun Su. Lithium Isotopic Fractionation in Minerals from Pegmatites: Perspective of Crystal Chemistry. Journal of Earth Science, 2024 https://doi.org/10.1007/s12583-024-0037-9

References

Allan D R, Angel R J. A High-Pressure Structural Study of Microcline (KAlSi3O8) to 7 GPa. European Journal of Mineralogy, 1997, 9(2): 263-276.
CrossRef Google scholar
Banhatti R D, Heuer A. Structure and Dynamics of Lithium Silicate Melts: Molecular Dynamics Simulations. Physical Chemistry Chemical Physics, 2001, 3(23): 5104-5108.
CrossRef Google scholar
Barnes E M, Weis D, Groat L A. Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 2012, 132/133: 21-36.
CrossRef Google scholar
Baur W H, Joswig W, Müller G. Mechanics of the Feldspar Framework: Crystal Structure of Li-Feldspar. Journal of Solid State Chemistry France, 1996, 121(1): 12-23.
CrossRef Google scholar
Brigatti M F, Kile D E, Poppi M. Crystal Structure and Crystal Chemistry of Lithium-Bearing Muscovite-2M1. The Canadian Mineralogist, 2001, 39(4): 1171-1180.
CrossRef Google scholar
Chen B, Huang C, Zhao H. Lithium and Nd Isotopic Constraints on the Origin of Li-Poor Pegmatite with Implications for Li Mineralization. Chemical Geology, 2020, 551 119769
CrossRef Google scholar
Cormier L, Majérus O, Neuville D R, . Temperature-Induced Structural Modifications between Alkali Borate Glasses and Melts. Journal of the American Ceramic Society, 2006, 89(1): 13-19.
CrossRef Google scholar
Deveaud S, Millot R, Villaros A. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 2015, 411: 97-111.
CrossRef Google scholar
Ding Z Y, Liu S K, Su B X, . Potassium Isotope Fractionation during Granite Differentiation and Implications for Crustal K Isotope Heterogeneity. Lithos, 2023, 448/449 107176
CrossRef Google scholar
Fan J J, Tang G J, Wei G J, . Lithium Isotope Fractionation during Fluid Exsolution: Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun, NW Tibet. Lithos, 2020, 352 105236
CrossRef Google scholar
Gagné O C, Hawthorne F C. Bond-Length Distributions for Ions Bonded to Oxygen: Alkali and Alkaline-Earth Metals. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2016, 72: 602-625.
CrossRef Google scholar
Howell I, Neilson G W. Hydration in Concentrated Aqueous Solution. Journal of Physics: Condensed Matter, 1996, 8(25): 4455-4463.
Ikeda T, Boero M, Terakura K. Hydration of Alkali Ions from First Principles Molecular Dynamics Revisited. Journal of Chemical Physics, 2007, 126 3 034501
CrossRef Google scholar
Jahn S, Wunder B. Lithium Speciation in Aqueous Fluids at High P and T Studied by ab initio Molecular Dynamics and Consequences for Li-Isotope Fractionation between Minerals and Fluids. Geochimica et Cosmochimica Acta, 2009, 73(18): 5428-5434.
CrossRef Google scholar
Kameda Y, Uemura O. Neutron Diffraction Study on the Structure of Highly Concentrated Aqueous LiBr Solutions. Bulletin of the Chemical Society of Japan, 1993, 66(2): 384-389.
CrossRef Google scholar
Kowalski P M, Jahn S. Prediction of Equilibrium Li Isotope Fractionation between Minerals and Aqueous Solutions at High P and T: An Efficient ab initio Approach. Geochimica et Cosmochimica Acta, 2011, 75(20): 6112-6123.
CrossRef Google scholar
Li J, Huang X L, Wei G J, . Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare-Metal Granites. Geochimica et Cosmochimica Acta, 2018, 240: 64-79.
CrossRef Google scholar
Liu S Q, Li Y B, Liu J, . Equilibrium Lithium Isotope Fractionation in Li-Bearing Minerals. Geochimica et Cosmochimica Acta, 2018, 235: 360-375.
CrossRef Google scholar
Liu X M, Rudnick R L, Hier-Majumder S, . Processes Controlling Lithium Isotopic Distribution in Contact Aureoles: A Case Study of the Florence County Pegmatites, Wisconsin. Geochemistry, Geophysics, Geosystems, 2010, 11 8 Q08014
CrossRef Google scholar
Lynton S J, Walker R J, Candela P A. Lithium Isotopes in the System Qz-Ms-Fluid: An Experimental Study. Geochimica et Cosmochimica Acta, 2005, 69(13): 3337-3347.
CrossRef Google scholar
Lyubartsev A P, Laasonen K, Laaksonen A. Hydration of Li+ Ion: An ab initio Molecular Dynamics Simulation. Journal of Chemical Physics, 2001, 114(7): 3120-3126.
CrossRef Google scholar
Magna T, Novák M, Cempírek J, . Crystallographic Control on Lithium Isotope Fractionation in Archean to Cenozoic Lithium-Cesium-Tantalum Pegmatites. Geology, 2016, 44(8): 655-658.
CrossRef Google scholar
Mähler J, Persson I. A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution. Inorganic Chemistry, 2012, 51(1): 425-438.
CrossRef Google scholar
Majérus O, Cormier L, Calas G, . Structural Modifications between Lithium-Diborate Glasses and Melts: Implications for Transport Properties and Melt Fragility. Journal of Physical Chemistry B, 2003, 107(47): 13044-13050.
CrossRef Google scholar
Maloney J S, Nabelek P I, Sirbescu M L C H. Lithium and Its Isotopes in Tourmaline as Indicators of the Crystallization Process in the San Diego County Pegmatites, California, USA. European Journal of Mineralogy, 2008, 20(5): 905-916.
CrossRef Google scholar
Nespolo M, Guillot B. CHARDI2015: Charge Distribution Analysis of Non-Molecular Structures. Journal of Applied Crystallography, 2016, 49(1): 317-321.
CrossRef Google scholar
Parkinson I, Hammond S, James R, . High-Temperature Lithium Isotope Fractionation: Insights from Lithium Isotope Diffusion in Magmatic Systems. Earth and Planetary Science Letters, 2007, 257(3/4): 609-621.
CrossRef Google scholar
Penniston-Dorland S, Liu X M, Rudnick R L. Teng F Z, Watkins J, Dauphas N. Lithium Isotope Geochemistry. Non-Traditional Stable Isotopes, 2017, 165-218
CrossRef Google scholar
Persson I. Hydrated Metal Ions in Aqueous Solution: How Regular are Their Structures?. Pure and Applied Chemistry, 2010, 82(10): 1901-1917.
CrossRef Google scholar
Phelps P R, Lee C T A, Morton D M. Episodes of Fast Crystal Growth in Pegmatites. Nature Communications, 2020, 11 4986
CrossRef Google scholar
Richter F, Chaussidon M, Bruce Watson E, . Lithium Isotope Fractionation by Diffusion in Minerals Part 2: Olivine. Geochimica et Cosmochimica Acta, 2017, 219: 124-142.
CrossRef Google scholar
Richter F, Watson B, Chaussidon M, . Lithium Isotope Fractionation by Diffusion in Minerals. Part 1: Pyroxenes. Geochimica et Cosmochimica Acta, 2014, 126: 352-370.
CrossRef Google scholar
Richter F M, Davis A M, DePaolo D J, . Isotope Fractionation by Chemical Diffusion between Molten Basalt and Rhyolite. Geochimica et Cosmochimica Acta, 2003, 67(20): 3905-3923.
CrossRef Google scholar
Richter F M, Liang Y, Davis A M. Isotope Fractionation by Diffusion in Molten Oxides. Geochimica et Cosmochimica Acta, 1999, 63(18): 2853-2861.
CrossRef Google scholar
Roda-Robles E, Pesquera-Pérez A, Simmons W B, . Evidence for Internal Fractionation from Li Isotopes in Tourmaline and Mica in the Berry-Havey Rare-Element Pegmatite (Maine, USA). The Canadian Mineralogist, 2019, 57(5): 779-782.
CrossRef Google scholar
Rudolph W, Brooker M H, Pye C C. Hydration of Lithium Ion in Aqueous Solutions. The Journal of Physical Chemistry, 1995, 99(11): 3793-3797.
CrossRef Google scholar
Sossi P A, O’Neill H St C. The Effect of Bonding Environment on Iron Isotope Fractionation between Minerals at High Temperature. Geochimica et Cosmochimica Acta, 2017, 196: 121-143.
CrossRef Google scholar
Teng F Z, McDonough W F, Rudnick R L, . Diffusion-Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 2006, 243(3/4): 701-710.
CrossRef Google scholar
Teng F Z, McDonough W F, Rudnick R L, . Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 2006, 91(10): 1488-1498.
CrossRef Google scholar
Tomascak P B. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 153-195.
CrossRef Google scholar
Tomascak P B, Magna T, Dohmen R. Hoefs J, Magna T, Dohmen R. Advances in Lithium Isotope Geochemistry. Advances in Isotope Geochemistry, 2016
CrossRef Google scholar
Watson E B, Müller T. Non-Equilibrium Isotopic and Elemental Fractionation during Diffusion-Controlled Crystal Growth under Static and Dynamic Conditions. Chemical Geology, 2009, 267(3): 111-124.
CrossRef Google scholar
Wenk H R, Kroll H. Analysis of P-1, I-1 and C-1 Plagioclase Structures. Bulletin de Minéralogie, 1984, 107(3): 467-487.
CrossRef Google scholar
Wunder B, Meixner A, Romer R L, . Lithium Isotope Fractionation between Li-Bearing Staurolite, Li-Mica and Aqueous Fluids: An Experimental Study. Chemical Geology, 2007, 238(3/4): 277-290.
CrossRef Google scholar
Wunder B, Meixner A, Romer R L, . Temperature-Dependent Isotopic Fractionation of Lithium between Clinopyroxene and High-Pressure Hydrous Fluids. Contributions to Mineralogy and Petrology, 2006, 151(1): 112-120.
CrossRef Google scholar
Wunder B, Meixner A, Romer R L, . Li-Isotope Fractionation between Silicates and Fluids: Pressure Dependence and Influence of the Bonding Environment. European Journal of Mineralogy, 2011, 23(3): 333-342.
CrossRef Google scholar
Yamaguchi T, Ohzono H, Yamagami M, . Ion Hydration in Aqueous Solutions of Lithium Chloride, Nickel Chloride, and Caesium Chloride in Ambient to Supercritical Water. Journal of Molecular Liquids, 2010, 153(1): 2-8.
CrossRef Google scholar
Yang D, Hou Z Q, Zhao Y, . Lithium Isotope Traces Magmatic Fluid in a Seafloor Hydrothermal System. Scientific Reports, 2015, 5 13812
CrossRef Google scholar
Young E D, Manning C E, Schauble E A, . High-Temperature Equilibrium Isotope Fractionation of Non-Traditional Stable Isotopes: Experiments, Theory, and Applications. Chemical Geology, 2015, 395: 176-195.
CrossRef Google scholar
Ye X Y, Li B, Chen X D, . Lithium Isotopic Systematics and Numerical Simulation for Highly-Fractionated Granite-Pegmatite System: Implications for the Pegmatite-Type Rare-Metal Mineralization. Ore Geology Reviews, 2023, 163 105722
CrossRef Google scholar
Zhang H J, Tian S H, Wang D H, . Lithium Isotope Behavior during Magmatic Differentiation and Fluid Exsolution in the Jiajika Granite-Pegmatite Deposit, Sichuan, China. Ore Geology Reviews, 2021, 134 104139
CrossRef Google scholar
Zhao H, Chen B, Huang C, . Geochemical and Sr-Nd-Li Isotopic Constraints on the Genesis of the Jiajika Li-Rich Pegmatites, Eastern Tibetan Plateau: Implications for Li Mineralization. Contributions to Mineralogy and Petrology, 2022, 177 1 4
CrossRef Google scholar
Zhou J S, Wang Q, Xu Y G, . Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 2021, 584 120484
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/