Newly Identified Au-Ag-Bi-Te Mineralization in the Aydindere Skarn Fe and Cu Deposit, Giresun, NE Turkey: Implications of Gold Mineralization during Retrograde Skarn Evolution

Ahmet Sasmaz , Vitaliy Sukach , Serhiy Bondarenko , Hryhorii Aleksiienko , Hengameh Erfanian Kaseb , Bilge Sasmaz , Sergiy Kurylo , Oleksandr Hrinchenko , Volodymyr Somka , Panagiotis Voudouris

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (2) : 543 -561.

PDF
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (2) : 543 -561. DOI: 10.1007/s12583-023-1976-x
Petrology, Mineral Deposits and Geochemistry

Newly Identified Au-Ag-Bi-Te Mineralization in the Aydindere Skarn Fe and Cu Deposit, Giresun, NE Turkey: Implications of Gold Mineralization during Retrograde Skarn Evolution

Author information +
History +
PDF

Abstract

This study investigates the mineralogy and mineral-chemistry of a newly discovered Au-Ag-Bi-Te mineralization at the Aydindere Fe-Cu skarn deposit, within the Pontides Tectonic Unit, northeastern Turkey. The mineralization is developed in the skarn zone at the contact between Upper Cretaceous andesite-pyroclastic rocks and a Paleocene-Eocene I-type granitoid. The principal ore minerals of the Aydindere Fe-Cu deposit are oxides (magnetite), sulfides (pyrite-chalcopyrite-galena-sphalerite), tellurides/sulfotellurides (tetradymite, hessite), sulfosalts (wittichenite, emplectite, aikinite) and native gold-electrum. Skarn minerals include anhydrous phases (garnet) formed in a prograde stage and hydrous phases (amphibole, epidote, chlorite), which were formed in a retrograde stage in association with quartz, adularia, apatite and late calcite. Sulfides, tellurides and sulfosalts are introduced during the retrograde stage. The Au-Ag-Bi-Te mineralization was detected for the first time within the western ore body of the Aydindere deposit, and occurs in calcite-bearing sulfide bodies that cut magnetite-garnet-amphibole-epidote skarns with magnetite ores of different grade, including massive magnetite. Chlorite geothermometry indicates formation of the Au-Ag-Bi-Te mineralization at temperatures between 300 and 250 °C, during the retrograde skarn evolution. Assuming the temperature is ∼275 °C, logfS2 = −10.5 to −13, logfO2 = −37 to −33, and logfTe2 values range from approximately −12 to −8.5 were estimated. The available mineralogical and geological data (presences of magnetite, oxidized-type tellurides/sulfotellurides, and andraditic garnets, and absence of pyrrhotite and arsenopyrite) suggest that Aydindere is an oxidized Au-bearing skarn deposit. The discovery of Au-Ag-Bi-Te mineralization at Aydindere increases its productivity and requires more detailed exploration in the deposit for precious (Au, Ag) and critical (Bi, Te) metals.

Cite this article

Download citation ▾
Ahmet Sasmaz, Vitaliy Sukach, Serhiy Bondarenko, Hryhorii Aleksiienko, Hengameh Erfanian Kaseb, Bilge Sasmaz, Sergiy Kurylo, Oleksandr Hrinchenko, Volodymyr Somka, Panagiotis Voudouris. Newly Identified Au-Ag-Bi-Te Mineralization in the Aydindere Skarn Fe and Cu Deposit, Giresun, NE Turkey: Implications of Gold Mineralization during Retrograde Skarn Evolution. Journal of Earth Science, 2025, 36(2): 543-561 DOI:10.1007/s12583-023-1976-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AfifiA M, KellyW C, EsseneE J. Phase Relations among Tellurides, Sulfides, and Oxides; I, Thermochemical Data and Calculated Equilibria. Economic Geology, 1988, 83(2): 377-394

[2]

AkaryaliE, AkbulutK. Constraints of C-O-S Isotope Compositions and the Origin of the Ünlüpinar Volcanic-Hosted Epithermal Pb-Zn±Au Deposit, Gümüşhane, NE Turkey. Journal of Asian Earth Sciences, 2016, 117: 119-134

[3]

AkçayM, ArarM, et al.Stanley, et al.. Geology, Mineralogy and Geochemistry of the Çayeli Massive Sulphide Ore Deposit, Rize, NE Turkey. Mineral Deposits. Processes to Processing, 1999, Rotterdam, Balkema

[4]

AlanI, BalciV, KeskinH, et al.. Tectonostratigraphic Characteristics of the Area between Çayeli (Rize) and İspir (Erzurum). Bulletin of the Mineral Research and Exploration, 2019, 158: 1-29

[5]

ArslanM, AslanZ. Mineralogy, Petrography and Whole-Rock Geochemistry of the Tertiary Granitic Intrusions in the Eastern Pontides, Turkey. Journal of Asian Earth Sciences, 2006, 27(2): 177-193

[6]

AydurmuşTInvestigation of Petrographic and Fluid Inclusion Characteristics of Karadag (Torul-Gümşüşhane) Fe-Cu Skarn Mineralization, 2018, Gümüşhane, Gümüşhane University

[7]

BartonP BJr, SkinnerB JBarnesH L. Sulfide Mineral Stabilities. Geochemistry of Hydrothermal Ore Deposits, 1979, New York, Wiley Interscience: 278-403

[8]

BoztuǧD, KuscuI, ErcinA, et al., et al.EliopoulosD G, et al., et al.. Mineral Deposits Associated with the Pre-, Syn-and Post-Collisional Granitoids of the Neo-Tethyan Convergence System between the Eurasian and Anatolian Plates in NE and Central Turkey. Mineral Exploration and Sustainable Development, 2003, Rotterdam, Millpress: 1141-1144

[9]

BoztuǧD, JonckheereR, WagnerG A, et al.. Slow Senonian and Fast Palaeocene - Early Eocene Uplift of the Granitoids in the Central Eastern Pontides, Turkey: Apatite Fission-Track Results. Tectonophysics, 2004, 382(3/4): 213-228

[10]

BoztuǧD, ErçinA I, KuruçelikM K, et al.. Geochemical Characteristics of the Composite Kaçkar Batholith Generate. Journal Asian Earth Sciences, 2006, 27: 286-302

[11]

BrooksJ W, MeinertL D, KuyperB A, et al.RainesG L, LisleR E, SchaferR W, et al.. Petrology and Geochemistry of the McCoy Gold Skarn, Lander County, Nevada. Geology and Ore Deposits of the Great Basin, 1991, Reno, Geological Society Nevada: 419-4421

[12]

ÇamurM Z, Güvenİ H H, ErM. Geochemical Characteristics of the Eastern Pontide Volcanics, Turkey: An Example of Multiple Volcanic Cycles in the Arc Evolution. Turkish Journal of Earth Sciences, 1996, 5(2): 123-144

[13]

CathelineauM. Cation Site Occupancy in Chlorites and Illites as a Function of Temperature. Clay Minerals, 1988, 23(4): 471-485

[14]

CepedalA, Fuertes-FuenteM, Martín-IzardA, et al.. Tellurides, Selenides and Bi-Mineral Assemblages from the Rio Narcea Gold Belt, Asturias, Spain: Genetic Implications in Cu–Au and Au Skarns. Mineralogy and Petrology, 2006, 87(3): 277-304

[15]

ChenY J, ChenH Y, ZawK, et al.. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China: An Overview. Ore Geology Reviews, 2007, 31(1/2/3/4): 139-169

[16]

ÇiftciE, HagniR D. Mineralogy of Lahanos Deposit a Kuroko-Type Volcanogenic Massive Sulfide Deposits from Eastern Pontides (Giresun-NE Turkey). Geological Bulletin of Turkey, 2005, 48: 58-64

[17]

CiobanuC L, CookN J. Intergrowths of Bismuth Sulphosalts from the Ocna de Fier Fe-Skarn Deposit, Banat, Southwest Romania. European Journal of Mineralogy, 2000, 12(4): 899-917

[18]

CiobanuC L, CookN J. Tellurides, Selenides (and Bi-Sulphosalts) in Gold Deposits. 11th Quadrennial IAGOD Symposium and Geocongress 2002, 2002

[19]

CiobanuC L, CookN J, BogdanovK, et al.EliopoulosD G, et al.. Gold Enrichment in Deposits of the Banatitic Magmatic and Metallogenetic Belt. Mineral Exploration and Sustainable Development, 2003, Rotterdam, Millpress: 1153-1156

[20]

CiobanuC L, CookN J, PringAMaoJ W, BierleinF P. Bismuth Tellurides as Gold Scavengers. Mineral Deposit Research: Meeting the Global Challenge, 2005, Berlin, Heidelberg, Springer Berlin Heidelberg

[21]

CookN J, CiobanuC L. Bismuth Tellurides and Sulphosalts from the Larga Hydrothermal System, Metaliferi Mts, Romania: Paragenesis and Genetic Significance. Mineralogical Magazine, 2004, 68(2): 301-321

[22]

CookN J, CiobanuC L, SpryP G, et al.. Understanding Gold- (Silver) -Telluride- (Selenide) Mineral Deposits. Episodes, 2009, 32(4): 249-263

[23]

DelibaşO, MoritzR, UlianovA, et al.. Cretaceous Subduction-Related Magmatism and Associated Porphyry-Type Cu-Mo Prospects in the Eastern Pontides, Turkey: New Constraints from Geochronology and Geochemistry. Lithos, 2016, 248/249/250/251: 119-137

[24]

DemİrY. Geological, Mineralogical, and Geochemical Properties of the Dagbasi Skarn Ores (Arakli-Trabzon, Ne Turkey). Bulletin of the Mineral Research and Exploration, 2018, 158: 165-194

[25]

DemirY, DişliA L. Fluid Inclusion and Stable Isotope Constraints (C, O, H) on the Dagbasi Fe-Cu-Zn Skarn Mineralization (Trabzon, NE Turkey). Ore Geology Reviews, 2020, 116: 103235

[26]

DemirY, BayraktarK. Geochemistry, Microthermometry, and C and O Isotope Constraints on the Origin of the Düzköy Fe-Cu Skarn Deposit (Gümüşhane, NE Turkey). Arabian Journal of Geosciences, 2020, 13(23): 1260

[27]

DemirY, UysalI, Burhan SadiklarM, et al.. Mineralogy, Mineral Chemistry, and Fluid Inclusion Investigation of Kostere Hydrothermal Vein-Type Deposit (Gumushane, NE-Turkey). Neues Jahrbuch für Mineralogie - Abhandlungen, 2008, 185(2): 215-232

[28]

DemirY, UysalI, SadiklarM B, et al.. Mineralogy, Mineral Chemistry, Fluid Inclusion, and Stable Isotope Investigations of the Kabadüz Ore Veins, Ordu, NE-Turkey. Ore Geology Reviews, 2015, 66: 82-98

[29]

DouglasN, MavrogenesJ, HackA, et al.. The Liquid Bismuth Collector Model: An Alternative Gold Deposition Mechanism. Australian Geological Congress, Abstracts, 2000, 59: 135

[30]

EinaudiM T, MeinertL D, NewberryR JSkinnerB J. Skarn Deposits. Seventy-Fifth Anniversary Volume, 1981, Littleton, Economic Geology Publishing Company: 317-391

[31]

EinaudiM T, BurtD M. Introduction; Terminology, Classification, and Composition of Skarn Deposits. Economic Geology, 1982, 77(4): 745-754

[32]

ErcanT, GedikA. Pontidlerdeki Volkanizma. Jeoloji Mühendisliǧi, 1983, 18: 3-22

[33]

FosterM DInterpretation of the Composition and a Classification of the Chlorites, 19621-33414-A

[34]

GarrelsR M, ChristC LSolutions, Minerals and Equilibria, 1965, New York, USA, Harper and Row: 450

[35]

GokçeA. Fluid Inclusion, Oxygen and Hydrogen Isotope Studies of the Çakmakkaya and Damarköy (Murgul-Artvin) Copper Deposits and Their Significances on the Genesis of These Deposits. Geological Bulletin of Turkey, 2001, 44: 23-37

[36]

GokçeA, SpiroB. Fluid-Related Characteristics of the Çakmakkaya and Damarköy Copper Deposits, Northeast Turkey. International Geology Review, 2002, 44(8): 744-754

[37]

Ali GücerM, ArslanM, SherlockS, et al.. Permo-Carboniferous Granitoids with Jurassic High Temperature Metamorphism in Central Pontides, Northern Turkey. Mineralogy and Petrology, 2016, 110(6): 943-964

[38]

Güvenİ H HDogu Pontidler’in 1/25.000 Ölçekli Komplikasyonu, 1993, Ankara, TA Genel Müdürlügü(unpublished)

[39]

HeW Y, MoX X, HeZ H, et al.. The Geology and Mineralogy of the Beiya Skarn Gold Deposit in Yunnan, Southwest China. Economic Geology, 2015, 110(6): 1625-1641

[40]

HenleyR W, TruesdellA H, BartonP B, et al.. Fluid-Mineral Equilibria in Hydrothermal Systems. Reviews in Economic Geolology, 1984, 1: 1-267

[41]

KarsliO, ChenB, AydinF, et al.. Geochemical and Sr-Nd-Pb Isotopic Compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for Magma Interaction in the Genesis of High-K Calc-Alkaline Granitoids in a Post-Collision Extensional Setting. Lithos, 2007, 98(1/2/3/4): 67-96

[42]

KarsliO, KetenciM, Uysalİ, et al.. Adakite-Like Granitoid Porphyries in the Eastern Pontides, NE Turkey: Potential Parental Melts and Geodynamic Implications. Lithos, 2011, 127(1/2): 354-372

[43]

KaygusuzA, ArslanM, SiebelW, et al.. Geochronological Evidence and Tectonic Significance of Carboniferous Magmatism in the Southwest Trabzon Area, Eastern Pontides, Turkey. International Geology Review, 2012, 54(15): 1776-1800

[44]

KaygusuzA, ArslanM, SipahiF, et al.. U-Pb Zircon Chronology and Petrogenesis of Carboniferous Plutons in the Northern Part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic Magmatism and Geodynamic Evolution. Gondwana Research, 2016, 39: 327-346

[45]

KaygusuzA, ArslanM, TemizelI, et al.. U-Pb Zircon Ages and Petrogenesis of the Late Cretaceous I-Type Granitoids in Arc Setting, Eastern Pontides, NE Turkey. Journal of African Earth Sciences, 2021, 174: 104040

[46]

Ketinİ. Anadolu’nun Tektonik Birlikleri. Bulletin of the Mineral Research and Exploration, 1966, 66: 20-37

[47]

KimE J, ParkM E, WhiteN C. Skarn Gold Mineralization at the Geodo Mine, South Korea. Economic Geology, 2012, 107(3): 537-551

[48]

KimE J, YangS J, ShinS, et al.. New Discoveries, Skarn Zonation, and Skarn Textures at the Geodo Mine in the Taebaeksan Basin, South Korea. Geosciences Journal, 2018, 22(6): 881-889

[49]

KuşcuI, et al.PirajnoF, et al.. Skarn and Skarn Deposits of Turkey. Mineral Resources of Turkey, 2019, Switzerland, Springer: 283-336

[50]

LeakeB E, WoolleyA R, ArpsC E S, et al.. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 1997, 9(3): 623-651

[51]

LawrenceD M, AlliboneA H, ChangZ, et al.. The Tongon Au Deposit, Northern Côte d’Ivoire: An Example of Paleoproterozoic Au Skarn Mineralization. Economic Geology, 2017, 112(7): 1571-1593

[52]

MeinertL D. Gold Skarn Deposits Geology and Exploration Criteria. Economic Geology Monograph, 1989, 6: 537-552

[53]

MeinertL D. Skarns and Skarn Deposits. Geoscience Canada, 1992, 19(4): 145-162

[54]

MeinertL D. Compositional Variation of Igneous Rocks Associated with Skarn Deposits-Chemical Evidence for a Genetic Connection between Petrogenesis and Mineralization. In: Thompson, J. F. H., ed., Magma, Fluid, and Ore Deposits. Mineralogical Association Canada, Short Course Series, 1995, 23: 401-418

[55]

MeinertL DLentzD R. A Review of Skarns That Contain Gold. Mineralized Porphyry/Skarn Systems, 1998359-41426

[56]

MeinertL DHagemannS G, BrownP E. Gold in Skarns Related to Epizonal Intrusions. Gold in 2000, 2000347-3752000, 13

[57]

MeinertL DSkarn and Skarn Deposits, 2007(online)

[58]

MeinertL D, DippleG M, NicolescuS. World Skarn Deposits. Economic Geology, 2005, 100: 299-336

[59]

MillsK CThermodynamic Data for Inorganic Sulfides, Selenides and Tellurides, 1974, London, Butterworths: 925

[60]

OkayA I, SahintürkO. Geology of the Eastern Pontides. In: Robinson, A. G., ed., Regional and Petroleum Geology of the Black Sea and Surrounding Region. American Association of Petroleum Geologists (AAPG) Memoir, 1997, 68: 291-311

[61]

OkayA I, TüysüzODurandB, JolivetL, HorváthF. Tethyan Sutures of Northern Turkey. The Mediterranean Basins: Tertiary Extension within the Alpine Orogen, 1999475-515

[62]

ÖzdamarŞ, RodenM F, BillorM Z. Petrology of the Shoshonitic Çambaşı Pluton in NE Turkey and Implications for the Closure of the Neo-Tethys Ocean: Insights from Geochemistry, Geochronology and Sr-Nd Isotopes. Lithos, 2017, 284/285: 477-492

[63]

PejatovicS. Metallogeny of the Pontide-Type Massive Sulfide Deposits. Mineral Research and Exploration Institute of Turkey Publication, 1979, 177: 1-100

[64]

RayG E, WebsterI C L. An Overview of Skarn Deposits. Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, 1991213-2521991-4

[65]

RayG E, EttlingerA D, MeinertL DGold Skarns: Their Distribution, Characteristics, and Problems in Classification, 1990237-2461990-1

[66]

RayG E, WebsterI C L, EttlingerA D. The Distribution of Skarns in British Columbia and the Chemistry and Ages of Their Related Plutonic Rocks. Economic Geology, 1995, 90(4): 920-937

[67]

RenY S, LiuL D, ZhangH H. Gold Deposits Rich in Bismuth Minerals: An Important Type of Gold Deposits. Mineral Deposit Research: Meeting the Global Challenge, 2005, Berlin, Heidelberg, Springer Berlin Heidelberg: 581-583

[68]

SasmazA. The Atbara Porphyry Gold-Copper Systems in the Red Sea Hills, Neoproterozoic Arabian - Nubian Shield, NE Sudan. Journal of Geochemical Exploration, 2020, 214: 106539

[69]

SasmazA, ÖnalA, SagirogluA, et al.. Origin and Nature of the Mineralizing Fluids of Thrust Zone Fluorites in Celikhan (Adiyaman, Eastern Turkey): A Geochemical Approach. Geochemical Journal, 2005, 39(2): 131-139

[70]

SasmazA, Didem KilicA, AkgulB, et al.. A Spectral Approach on Mineralogy and Geochemistry of Garnet Skarns in Arc-Type Granitoids. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2023, 286: 122037

[71]

ŞengörA M C, YilmazY. Tethyan Evolution of Turkey: A Plate Tectonic Approach. Tectonophysics, 1981, 75(3/4): 181-241

[72]

SintN N, YonezuK, TindellT, et al.. Geology and Skarn Cu-Bi-Au Mineralization at Shwe Min Bon Area, Kalaw Township, Southern Shan State, Myanmar. Resource Geology, 2019, 69(1): 85-106

[73]

SipahiFMineralogy and Geochemistry of Hydrothermal Alterations in Zigana Mountain (Torul-Gümüşhane) Volcanics, 2005(in Turkish with English Abstract)

[74]

SipahiF. Formation of Skarns at Gümüşhane (Northeastern Turkey). Neues Jahrbuch für Mineralogie-Abhandlungen, 2011, 188(2): 169-190

[75]

SipahiF, SadiklarM B. The Alteration Mineralogy and Mass Change of the Zigana (Gümüşhane) Volcanic of NE Turkey. Geological Bulletin of Turkey, 2010, 53: 122-155

[76]

SipahiF, SadiklarM B. Geochemistry of Dacitic Volcanics in the Eastern Pontides (NE Turkey). Geochemistry International, 2014, 52(4): 296-315

[77]

SipahiF, SadıklarM B, ŞenC. Geochemical and Sr-Nd Isotopic Characteristics of Murgul (Artvin) Volcanic Rocks in the Eastern Black Sea Region (Northeast Turkey). Geochemistry, 2014, 74(3): 331-342

[78]

SipahiF, Akpınarİ, EkerÇ S S, et al.. Formation of the Eǧrikar (Gümüşhane) Fe-Cu Skarn Type Mineralization in NE Turkey: U-Pb Zircon Age, Lithogeochemistry, Mineral Chemistry, Fluid Inclusion, and O-H-C-S Isotopic Compositions. Journal of Geochemical Exploration, 2017, 182: 32-52

[79]

SipahiF, KaygusuzA, EkerS, et al.. Late Cretaceous Arc Igneous Activity: The Eǧrikar Monzogranite Example. International Geology Review, 2018, 60(3): 382-400

[80]

SipahiF, Saydam EkerÇ, AkpinarI, et al.. Eocene Magmatism and Associated Fe-Cu Mineralization in Northeastern Turkey: A Case Study of the Karadaǧ Skarn. International Geology Review, 2022, 64(11): 1530-1555

[81]

SuiJ X, LiJ W, WenG, et al.. The Dewulu Reduced Au-Cu Skarn Deposit in the Xiahe-Hezuo District, West Qinling Orogen, China: Implications for an Intrusion-Related Gold System. Ore Geology Reviews, 2017, 80: 1230-1244

[82]

SukachV, SasmazA, BondarenkoS, et al.. Aydindere Skarn Iron Deposit of Giresun Province, Turkey. Prospects Rise as a Result of Detection of Au-Ag-Bi-Te Mineralization, 2019211-214

[83]

TheodoreT G, OrrisG J, HammarstromJ M, et al.Gold Bearing Skarns, 19911930

[84]

TopuzG, AltherrR, SchwarzW H, et al.. Variscan Amphibolite-Facies Rocks from the Kurtoǧlu Metamorphic Complex (Gümüşhane Area, Eastern Pontides, Turkey). International Journal of Earth Sciences, 2007, 96(5): 861-873

[85]

TopuzG, AltherrR, SiebelW, et al.. Carboniferous High-Potassium I-Type Granitoid Magmatism in the Eastern Pontides: The Gümüşhane Pluton (NE Turkey). Lithos, 2010, 116(1/2): 92-110

[86]

TüysüzN. Ordu-Ünye-Fatsa-Aybasti Yöresindeki Altin Aramalarina Çok Deǧişkenli Istatistik Yöntemlerinin Uygulanması ve Jeokimyasal Yorumu. Geological Bulletin of Turkey, 1992, 35: 141-146

[87]

TüysüzN, ErM. Chemical and Mineralogical Changes in the Alteration Zones at the Lahanos (Espiye) and İsraildere (Tirebolu) Massive Sulfide Mineralizations, Giresun, NE Turkey. Bulletin Geological Congress Turkey, 1995, 10: 104-113(in Turkish)

[88]

TuysuzN. Geology, Lithogeochemistry and Genesis of the Murgul Massive Sulfide Deposit, NE-Turkey. Chemie der Erde, 2000, 60(3): 231-250

[89]

ÜnalE, GökçeA. Geology and Fluid Inclusion Characteristics of the Akgüney (Kabadüz-Ordu) Copper-Lead-Zinc Deposits. Geological Bulletin of Turkey, 2007, 50(3): 158-175

[90]

VallanceJ, FontbotéL, ChiaradiaM, et al.. Magmatic-Dominated Fluid Evolution in the Jurassic Nambija Gold Skarn Deposits (Southeastern Ecuador). Mineralium Deposita, 2009, 44(4): 389-413

[91]

VoudourisP C, MelfosV, SpryP G, et al.. Mineralogy and Geochemical Environment of Formation of the Perama Hill High-Sulfidation Epithermal Au-Ag-Te-Se Deposit, Petrota Graben, NE Greece. Mineralogy and Petrology, 2011, 103(1): 79-100

[92]

VoudourisP C, SpryP G, MavrogonatosC, et al.. Bismuthinite Derivatives, Lillianite Homologues, and Bismuth Sulfotellurides as Indicators of Gold Mineralization in the Stanos Shear-Zone Related Deposit, Chalkidiki, Northern Greece. The Canadian Mineralogist, 2013, 51(1): 119-142

[93]

WuY, KainanM. Advances in Skarn Type Gold Deposits. International Journal of Earth Sciences and Engineering, 2016, 9: 1916-1921

[94]

XieJ C, ZhangX, HuangS, et al.. Genesis of Chaoshan Skarn Au Deposit, Tongling, Eastern China: Insights from Mineral Geochemistry. Journal of Geochemical Exploration, 2022, 241: 107055

[95]

YalçınalpB. Doǧu Pontidler’ de Porfiri Cu-Mo Mineralleşmeleri içeren Granitoyilerin Jeokimyasal Özellikleri. Geological Bulletin of Turkey, 1995, 38: 25-32

[96]

YigitO. Mineral Deposits of Turkey in Relation to Tethyan Metallogeny: Implications for Future Mineral Exploration. Economic Geology, 2009, 104(1): 19-51

[97]

YılmazY, TüysüzO, YiǧitbaşE, et al.. Geology and Tectonic Evolution of the Pontides. In: Robinson, A. G., ed., Regional and Petroleum Geology of the Black Sea and Surrounding Region. American Association of Petroleum Geologists (AAPG) Memoir, 1997, 68: 183-226

[98]

ZaneA, WeissZ. A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data. Rendiconti Lincei, 1998, 9(1): 51-56

[99]

ZhouH Y, SunX M, FuY, et al.. Mineralogy and Mineral Chemistry of Bi-Minerals: Constraints on Ore Genesis of the Beiya Giant Porphyry-Skarn Gold Deposit, Southwestern China. Ore Geology Reviews, 2016, 79: 408-424

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

361

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/