Lithium Isotope Analytical Methods and Implications for Rare-Metal Mineralization in Granite-Pegmatite Systems: An Overview

Xiangying Ye, Bin Li, Dongbo Tan, Kecheng Liu, Zhiyong Zhu, Hafiz Muhammad Siddique, Yilin Xiao

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (6) : 1878-1894.

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (6) : 1878-1894. DOI: 10.1007/s12583-023-1972-1
Ore Deposits

Lithium Isotope Analytical Methods and Implications for Rare-Metal Mineralization in Granite-Pegmatite Systems: An Overview

Author information +
History +

Abstract

The origin of highly-fractionated granite-pegmatite systems and their associated rare metal mineralization has been widely studied, but there is still ongoing debate. Prevailing hypotheses suggest that pegmatite formation and the associated rare metal mineralization are closely related to aqueous fluid processes. Lithium (Li) isotope analysis has been widely applied to trace granite-pegmatite evolution. This is because lithium is widely present in various minerals (e.g., mica, tourmaline) that record the melt and fluid compositions, and lithium isotopes are sensitive to magmatic-hydrothermal processes. We briefly review the methodology of Li isotope analyses, the mechanisms of Li isotopic fractionation, and, in particular, Li isotope fractionation in granite-pegmatite system based on Li isotope data we have collected and the latest developments in Li isotope geochemistry. With the development of analytical technology, high-precision measurement of the Li content and isotopic compositions have facilitated a series of scientific breakthroughs in understanding the magmatic-hydrothermal evolution of rare-element ore deposits. Li isotope analyses on bulk mineral separates have demonstrated their ability to trace various hydrothermal processes. In situ Li isotope analysis methods has been enhanced by the development of new, homogeneous mineral reference materials. In situ SIMS and LA-MC-ICP-MS Li isotope measurements on minerals (e. g., tourmaline) will likely become more important in studying the fluid-rock interactions in magmatic, metamorphic, and hydrothermal processes, as well as on pegmatite petrogenesis and rare-metal mineralization.

Cite this article

Download citation ▾
Xiangying Ye, Bin Li, Dongbo Tan, Kecheng Liu, Zhiyong Zhu, Hafiz Muhammad Siddique, Yilin Xiao. Lithium Isotope Analytical Methods and Implications for Rare-Metal Mineralization in Granite-Pegmatite Systems: An Overview. Journal of Earth Science, 2024, 35(6): 1878‒1894 https://doi.org/10.1007/s12583-023-1972-1

References

AulbachS, RudnickR L. Origins of Non-Equilibrium Lithium Isotopic Fractionation in Xenolithic Peridotite Minerals: Examples from Tanzania. Chemical Geology, 2009, 258(1/2): 17-27
CrossRef Google scholar
BachmannO, BergantzG W. On the Origin of Crystal-Poor Rhyolites: Extracted from Batholithic Crystal Mushes. Journal of Petrology, 2004, 45(8): 1565-1582
CrossRef Google scholar
BadaninaE V, TrumbullR B, DulskiP, et al. . The Behavior of Rare-Earth and Lithophile Trace Elements in Rare-Metal Granites: A Study of Fluorite, Melt Inclusions and Host Rocks from the Khangilay Complex, Transbaikalia, Russia. The Canadian Mineralogist, 2006, 44(3): 667-692
CrossRef Google scholar
BadaninaE V, VekslerI V, ThomasR, et al. . Magmatic Evolution of Li-F, Rare-Metal Granites: A Case Study of Melt Inclusions in the Khangilay Complex, Eastern Transbaikalia (Russia). Chemical Geology, 2004, 210(1/2/3/4): 113-133
CrossRef Google scholar
BarnesE M, WeisD, GroatL A. Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 2012, 132/133: 21-36
CrossRef Google scholar
BazarkinaE F, PokrovskiG S, ZotovA V, et al. . Structure and Stability of Cadmium Chloride Complexes in Hydrothermal Fluids. Chemical Geology, 2010, 276(1/2): 1-17
CrossRef Google scholar
BellD R, HervigR L, BuseckP R, et al. . Lithium Isotope Analysis of Olivine by SIMS: Calibration of a Matrix Effect and Application to Magmatic Phenocrysts. Chemical Geology, 2009, 258(1/2): 5-16
CrossRef Google scholar
BertoldiC, ProyerA, Garbe-SchönbergD, et al. . Comprehensive Chemical Analyses of Natural Cordierites: Implications for Exchange Mechanisms. Lithos, 2004, 78(4): 389-409
CrossRef Google scholar
BlundyJ D, RobinsonJ A C, WoodB J. Heavy REE are Compatible in Clinopyroxene on the Spinel Lherzolite Solidus. Earth and Planetary Science Letters, 1998, 160(3/4): 493-504
CrossRef Google scholar
BohlinM S, MisraS, LloydN, et al. . High-Precision Determination of Lithium and Magnesium Isotopes Utilising Single Column Separation and Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry: RCM, 2018, 32(2): 93-104
CrossRef Google scholar
BouvierA S, UshikuboT, KitaN T, et al. . Li Isotopes and Trace Elements as a Petrogenetic Tracer in Zircon: Insights from Archean TTGs and Sanukitoids. Contributions to Mineralogy and Petrology, 2012, 163(5): 745-768
CrossRef Google scholar
BrigattiM F, KileD E, PoppiL. Crystal Structure and Chemistry of Lithium-Bearing Trioctahedral Micas-3T. European Journal of Mineralogy, 2003, 15(2): 349-355
CrossRef Google scholar
CernyP, LondonD, NovakM. Granitic Pegmatites as Reflections of Their Sources. Elements, 2012, 8(4): 289-294
CrossRef Google scholar
CameronE N, JahnsR H, McNairA H, et al. . Internal Structure of Granitic Pegmatites. Geologiska Föreningen i Stockholm Förhandlingar, 1950, 72(3): 361-362
CrossRef Google scholar
CandelaP A, PiccoliP M. Model Ore-Metal Partitioning from Melts into Vapor and Vapor/Brine Mixtures, 1995 101-127
CashmanK V, SparksR S J, BlundyJ D. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 2017, 355(6331): eaag3055
CrossRef Google scholar
ChanL H, EdmondJ M. Variation of Lithium Isotope Composition in the Marine Environment: A Preliminary Report. Geochimica et Cosmochimica Acta, 1988, 52(6): 1711-1717
CrossRef Google scholar
ChanL H, EdmondJ M, ThompsonG. A Lithium Isotope Study of Hot Springs and Metabasalts from Mid-Ocean Ridge Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 1993, 98(B6): 9653-9659
CrossRef Google scholar
ChanL H. Lithium Isotope Analysis by Thermal Ionization Mass Spectrometry of Lithium Tetraborate. Analytical Chemistry, 1987, 59(22): 2662-2665
CrossRef Google scholar
ChanL H, LeemanW P, YouC F. Lithium Isotopic Composition of Central American Volcanic Arc Lavas: Implications for Modification of Subarc Mantle by Slab-Derived Fluids. Chemical Geology, 1999, 160(4): 255-280
CrossRef Google scholar
ChanL H, LeemanW P, YouC F. Lithium Isotopic Composition of Central American Volcanic Arc Lavas: Implications for Modification of Subarc Mantle by Slab-Derived Fluids: Correction. Chemical Geology, 2002, 182(2/3/4): 293-300
CrossRef Google scholar
CharlierB L A, GinibreC, MorganD, et al. . Methods for the Microsampling and High-Precision Analysis of Strontium and Rubidium Isotopes at Single Crystal Scale for Petrological and Geochronological Applications. Chemical Geology, 2006, 232(3/4): 114-133
CrossRef Google scholar
ChenB, GuH O, ChenY J, et al. . Lithium Isotope Behaviour during Partial Melting of Metapelites from the Jiangnan Orogen, South China: Implications for the Origin of REE Tetrad Effect of F-Rich Granite and Associated Rare-Metal Mineralization. Chemical Geology, 2018, 483: 372-384
CrossRef Google scholar
ChenB, HuangC, ZhaoH. Lithium and Nd Isotopic Constraints on the Origin of Li-Poor Pegmatite with Implications for Li Mineralization. Chemical Geology, 2020, 551: 119769
CrossRef Google scholar
ChenX Y, WuJ H, TangW X, et al. . Newly Found Giant Granite-Associated Lithium Resources in the Western Jiangxi Province, South China. Earth Science, 2023, 48(10): 3957-3960 (in Chinese with English Abstract)
ChoiH B, RyuJ S, ShinW J, et al. . The Impact of Anthropogenic Inputs on Lithium Content in River and Tap Water. Nature Communications, 2019, 10: 5371
CrossRef Google scholar
ChoiM S, ShinH S, KilY W. Precise Determination of Lithium Isotopes in Seawater Using MC-ICP-MS. Microchemical Journal, 2010, 95(2): 274-278
CrossRef Google scholar
CooganL A. Preliminary Experimental Determination of the Partitioning of Lithium between Plagioclase Crystals of Different Anorthite Contents. Lithos, 2011, 125(1/2): 711-715
CrossRef Google scholar
CooganL, KasemannS, ChakrabortyS. Rates of Hydrothermal Cooling of New Oceanic Upper Crust Derived from Lithium-Geospeedometry. Earth and Planetary Science Letters, 2005, 240(2): 415-424
CrossRef Google scholar
CooperK M. Time Scales and Temperatures of Crystal Storage in Magma Reservoirs: Implications for Magma Reservoir Dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377(2139): 20180009
CoplenT B, BöhlkeJ K, De BièvreP, et al. . Isotope-Abundance Variations of Selected Elements (IUPAC Technical Report). Pure and Applied Chemistry, 2002, 74(10): 1987-2017
CrossRef Google scholar
DargentM, DubessyJ, TrucheL, et al. . Experimental Study of Uranyl(VI) Chloride Complex Formation in Acidic LiCl Aqueous Solutions under Hydrothermal Conditions (T = 21 °C–350 °C, Psat) Using Raman Spectroscopy. European Journal of Mineralogy, 2014, 25(5): 765-775
CrossRef Google scholar
DeveaudS, MillotR, VillarosA. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 2015, 411: 97-111
CrossRef Google scholar
ElliottT, JeffcoateA, BoumanC. The Terrestrial Li Isotope Cycle: Light-Weight Constraints on Mantle Convection. Earth and Planetary Science Letters, 2004, 220(3/4): 231-245
CrossRef Google scholar
ElliottT, ThomasA, JeffcoateA, et al. . Lithium Isotope Evidence for Subduction-Enriched Mantle in the Source of Mid-Ocean-Ridge Basalts. Nature, 2006, 443: 565-568
CrossRef Google scholar
EllisB S, NeukampfJ, BachmannO, et al. . Biotite as a Recorder of an Exsolved Li-Rich Volatile Phase in Upper-Crustal Silicic Magma Reservoirs. Geology, 2022, 50(4): 481-485
CrossRef Google scholar
FanJ J, TangG J, WeiG J, et al. . Lithium Isotope Fractionation during Fluid Exsolution: Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun, NW Tibet. Lithos, 2020, 352: 105236
CrossRef Google scholar
FleschG D, AndersonA R, SvecH J. A Secondary Isotopic Standard for 6Li/7Li Determinations. International Journal of Mass Spectrometry and Ion Processes, 1973, 12(3): 265-272
CrossRef Google scholar
FroelichF, MisraS. Was the Late Paleocene – Early Eocene Hot Because Earth was Flat? An Ocean Lithium Isotope View of Mountain Building, Continental Weathering, Carbon Dioxide, and Earth’s Cenozoic Clima. Oceanography, 2014, 27(1): 36-49
CrossRef Google scholar
GahlanH A, AzerM K, AsimowP D, et al. . Geochemistry, Petrogenesis and Alteration of Rare-Metal-Bearing Granitoids and Mineralized Silexite of the Al-Ghurayyah Stock, Arabian Shield, Saudi Arabia. Journal of Earth Science, 2023, 34(5): 1488-1510
CrossRef Google scholar
GallagherK, ElliottT. Fractionation of Lithium Isotopes in Magmatic Systems as a Natural Consequence of Cooling. Earth and Planetary Science Letters, 2009, 278(3/4): 286-296
CrossRef Google scholar
GaoY Y. Origin of A-Type Granites in East China: Evidence from Hf-O-Li Isotopes, 2016 Sydney Macquarie University
GordienkoV V, GordienkoV V, SergeevA S, et al. . First Data in Favor of the Crystallization Model of Lithium Isotope Fractionation in the Pegmatitic Process. Doklady Earth Sciences, 2007, 413(2): 441-443
CrossRef Google scholar
HalamaR, McDonoughW F, RudnickR L, et al. . The Li Isotopic Composition of Oldoinyo Lengai: Nature of the Mantle Sources and Lack of Isotopic Fractionation during Carbonatite Petrogenesis. Earth and Planetary Science Letters, 2007, 254(1/2): 77-89
CrossRef Google scholar
HartS R, DunnT. Experimental Cpx/Melt Partitioning of 24 Trace Elements. Contributions to Mineralogy and Petrology, 1993, 113(1): 1-8
CrossRef Google scholar
HuangK F, YouC F, LiuY H, et al. . Low-Memory, Small Sample Size, Accurate and High-Precision Determinations of Lithium Isotopic Ratios in Natural Materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1019-1024
CrossRef Google scholar
HuhY, ChanL H, ZhangL B, et al. . Lithium and Its Isotopes in Major World Rivers: Implications for Weathering and the Oceanic Budget. Geochimica et Cosmochimica Acta, 1998, 62(12): 2039-2051
CrossRef Google scholar
HuheeyJ E, KeiterE A, KeiterR L, et al. . Inorganic Chemistry: Principles of Structure and Reactivity, 2006
IcenhowerJ, LondonD. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 1995, 80(11/12): 1229-1251
CrossRef Google scholar
JacksonM D, BlundyJ, SparksR S J. Chemical Differentiation, Cold Storage and Remobilization of Magma in the Earth’s Crust. Nature, 2018, 564: 405-409
CrossRef Google scholar
JahnS, WunderB. Lithium Speciation in Aqueous Fluids at High P and T Studied by Ab Initio Molecular Dynamics and Consequences for Li-Isotope Fractionation between Minerals and Fluids. Geochimica et Cosmochimica Acta, 2009, 73(18): 5428-5434
CrossRef Google scholar
JahnsR H. The Genesis of Pegmatites: I. Occurrence and Origin of Giant Crystals. American Mineralogist, 1953, 38(7/8): 563-598
JahnsR H, BurnhamC W. Experimental Studies of Pegmatite Genesis; L, a Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 1969, 64(8): 843-864
CrossRef Google scholar
JakopičR, RichterS, KühnH, et al. . Determination of 240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu Isotope Ratios in Environmental Reference Materials and Samples from Chernobyl by Thermal Ionization Mass Spectrometry (TIMS) and Filament Carburization. Journal of Analytical Atomic Spectrometry, 2010, 25(6): 815-821
CrossRef Google scholar
JamesR H, PalmerM R. The Lithium Isotope Composition of International Rock Standards. Chemical Geology, 2000, 166(3/4): 319-326
CrossRef Google scholar
JeffcoateA B, KasemannS A, ElliottT. High-Spatial Resolution Lithium Isotope Variation in Mantle Minerals. Geochimica et Cosmochimica Acta, 2004, 68(11): A52
JiangS-Y, WangC L, ZhangL, et al. . In situ Trace Element Tracing and Isotopic Dating of Pegmatite Type Lithium Deposits: An Overview. Acta Geologica Sinica, 2021, 95(10): 3017-3038 (in Chinese with English Abstract)
JiangS-Y, SuH M, ZhuX Y, et al. . A New Type of Li Deposit: Hydrothermal Crypto-Explosive Breccia Pipe Type. Journal of Earth Science, 2022, 33(5): 1095-1113
CrossRef Google scholar
JiangS-Y, WangW, SuH M. Super-Enrichment Mechanisms of Strategic Critical Metal Deposits: Current Understanding and Future Perspectives. Journal of Earth Science, 2023, 34(4): 1295-1298
CrossRef Google scholar
KaeterD, BarrosR, MenugeJ F, et al. . The Magmatic-Hydrothermal Transition in Rare-Element Pegmatites from Southeast Ireland: LA-ICP-MS Chemical Mapping of Muscovite and Columbite-Tantalite. Geochimica et Cosmochimica Acta, 2018, 240: 98-130
CrossRef Google scholar
KasemannS A, JeffcoateA B, ElliottT. Lithium Isotope Composition of Basalt Glass Reference Material. Analytical Chemistry, 2005, 77(16): 5251-5257
CrossRef Google scholar
KimuraJ I, ChangQ, IshikawaT, et al. . Influence of Laser Parameters on Isotope Fractionation and Optimisation of Lithium and Boron Isotope Ratio Measurements Using Laser Ablation-Multiple Faraday Collector-Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 2016, 31(11): 2305-2320
CrossRef Google scholar
KošlerJ, KučeraM, SylvesterP. Precise Measurement of Li Isotopes in Planktonic Foraminiferal Tests by Quadrupole ICPMS. Chemical Geology, 2001, 181(1/2/3/4): 169-179
CrossRef Google scholar
KowalskiP M, JahnS. Prediction of Equilibrium Li Isotope Fractionation between Minerals and Aqueous Solutions at High P and T: An Efficient Ab Initio Approach. Geochimica et Cosmochimica Acta, 2011, 75(20): 6112-6123
CrossRef Google scholar
KraiemM, RichterS, KühnH, et al. . Development of an Improved Method to Perform Single Particle Analysis by TIMS for Nuclear Safeguards. Analytica Chimica Acta, 2011, 688(1): 1-7
CrossRef Google scholar
KüsterD. Rare-Metal Pegmatites of Wamba, Central Nigeria—Their Formation in Relationship to Late Pan-African Granites. Mineralium Deposita, 1990, 25(1): 25-33
CrossRef Google scholar
Le RouxP J. Lithium Isotope Analysis of Natural and Synthetic Glass by Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1033-1038
CrossRef Google scholar
LefebvreM G, RomerR L, GlodnyJ, et al. . Skarn Formation and Tin Enrichment during Regional Metamorphism: The Hämmerlein Polymetallic Skarn Deposit. Lithos, 2019, 348/349: 105171
CrossRef Google scholar
LeiX F, RomerR L, GlodnyJ, et al. . Geochemical Significance of Lithium and Boron Isotopic Heterogeneity Evolving during the Crystallization of Granitic Melts. Geology, 2023, 51(6): 581-585
CrossRef Google scholar
LiJ. Mineralogical Constraints on Magmatic Evolution and Hydrothermal Processes in South China Mesozoic Rare Metal Granites, 2015 Beijing University of Chinese Academy of Sciences (in Chinese with English Abstract)
LiJ, HuangX L, WeiG J, et al. . Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare-Metal Granites. Geochimica et Cosmochimica Acta, 2018, 240: 64-79
CrossRef Google scholar
LiX H, LiQ L, LiuY, et al. . Further Characterization of M257 Zircon Standard: A Working Reference for SIMS Analysis of Li Isotopes. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 352-358
CrossRef Google scholar
LiR Y, HaoJ L, YangW, et al. . A Silica-Related Matrix Effect on NanoSIMS Li Isotopic Analysis of Glasses and Its Online Calibration. Journal of Analytical Atomic Spectrometry, 2023, 38(10): 1962-1972
CrossRef Google scholar
LinJ, LiuY S, HuZ C, et al. . Accurate Analysis of Li Isotopes in Tourmalines by LA-MC-ICP-MS under “Wet” Conditions with Non-Matrix-Matched Calibration. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1145-1153
CrossRef Google scholar
LinJ, LiuY S, HuZ C, et al. . Accurate Measurement of Lithium Isotopes in Eleven Carbonate Reference Materials by MC-ICP-MS with Soft Extraction Mode and 1012 Ω Resistor High-Gain Faraday Amplifiers. Geostandards and Geoanalytical Research, 2019, 43(2): 277-289
CrossRef Google scholar
LinJ, LiuY S, HuZ C, et al. . Accurate Determination of Lithium Isotope Ratios by MC-ICP-MS without Strict Matrix-Matching by Using a Novel Washing Method. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 390-397
CrossRef Google scholar
LinnenR L. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li + F; Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 1998, 93(7): 1013-1025
CrossRef Google scholar
LinnenR L, Van LichterveldeM, CernyP. Granitic Pegmatites as Sources of Strategic Metals. Elements, 2012, 8(4): 275-280
CrossRef Google scholar
LiuH Y, TangJ X, ZengQ G, et al. . Petrogenesis and Geological Significance of Early Cretaceous Granites in Tajigang Mining Area, Central Tibet. Earth Science, 2022, 47(4): 1217-1233
LiuX M, LiW S. Optimization of Lithium Isotope Analysis in Geological Materials by Quadrupole ICP-MS. Journal of Analytical Atomic Spectrometry, 2019, 34(8): 1708-1717
CrossRef Google scholar
LiuY H, HuangK F, LeeD C. Precise and Accurate Boron and Lithium Isotopic Determinations for Small Sample-Size Geological Materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2018, 33(5): 846-855
CrossRef Google scholar
LiuY S, HuZ C, LiM, et al. . Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples. Chinese Science Bulletin, 2013, 58(32): 3863-3878
CrossRef Google scholar
LondonD. Pegmatites. The Canadian Mineralogist, 2008, 10: 347
LondonD. The Origin of Primary Textures in Granitic Pegmatites. The Canadian Mineralogist, 2009, 47(4): 697-724
CrossRef Google scholar
LondonD, ManningD A C. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 1995, 90(3): 495-519
CrossRef Google scholar
LondonD, MorganG B. The Pegmatite Puzzle. Elements, 2012, 8(4): 263-268
CrossRef Google scholar
LudwigT, MarschallH R, Pogge von StrandmannP A E, et al. . A Secondary Ion Mass Spectrometry (SIMS) Re-evaluation of B and Li Isotopic Compositions of Cu-Bearing Elbaite from Three Global Localities. Mineralogical Magazine, 2011, 75(4): 2485-2494
CrossRef Google scholar
LundstromC C, ChaussidonM, HsuiA T, et al. . Observations of Li Isotopic Variations in the Trinity Ophiolite: Evidence for Isotopic Fractionation by Diffusion during Mantle Melting. Geochimica et Cosmochimica Acta, 2005, 69(3): 735-751
CrossRef Google scholar
MagnaT, DayJ M D, MezgerK, et al. . Lithium Isotope Constraints on Crust-Mantle Interactions and Surface Processes on Mars. Geochimica et Cosmochimica Acta, 2015, 162: 46-65
CrossRef Google scholar
MagnaT, JanoušekV, KohútM, et al. . Fingerprinting Sources of Orogenic Plutonic Rocks from Variscan Belt with Lithium Isotopes and Possible Link to Subduction-Related Origin of Some A-Type Granites. Chemical Geology, 2010, 274(1/2): 94-107
CrossRef Google scholar
MagnaT, NovákM, CempírekJ, et al. . Crystallographic Control on Lithium Isotope Fractionation in Archean to Cenozoic Lithium-Cesium-Tantalum Pegmatites. Geology, 2016, 44(8): 655-658
CrossRef Google scholar
MagnaT, WiechertU, HallidayA N. New Constraints on the Lithium Isotope Compositions of the Moon and Terrestrial Planets. Earth and Planetary Science Letters, 2006, 243(3/4): 336-353
CrossRef Google scholar
MaloneyJ S, NabelekP I, SirbescuM L C, et al. . Lithium and Its Isotopes in Tourmaline as Indicators of the Crystallization Process in the San Diego County Pegmatites, California, USA. European Journal of Mineralogy, 2008, 20(5): 905-916
CrossRef Google scholar
MarignacC, CuneyM. Evidence of Nb-Ta Mobility in High Temperature F-Rich Fluids Evidenced by the La Bosse Quartz-Nb-Ferberite Stockwork (Echassières, French Massif Central). EGU General Assembly Conference Abstracts, 2012 11121
MarksM A W, RudnickR L, LudwigT, et al. . Sodic Pyroxene and Sodic Amphibole as Potential Reference Materials for in situ Lithium Isotope Determinations by SIMS. Geostandards and Geoanalytical Research, 2008, 32(3): 295-310
CrossRef Google scholar
MarschallH R, JiangS Y. Tourmaline Isotopes: No Element Left Behind. Elements, 2011, 7(5): 313-319
CrossRef Google scholar
MarschallH R, TangM. High-Temperature Processes: Is it Time for Lithium Isotopes?. Elements, 2020, 16(4): 247-252
CrossRef Google scholar
MartinC, PonzeveraE, HarlowG. In situ Lithium and Boron Isotope Determinations in Mica, Pyroxene, and Serpentine by LA-MC-ICP-MS. Chemical Geology, 2015, 412: 107-116
CrossRef Google scholar
MasukawaK, NishioY, HayashiK I. Lithium-Strontium Isotope and Heavy Metal Content of Fluid Inclusions and Origin of Ore-Forming Fluid Responsible for Tungsten Mineralization at Takatori Mine, Japan. Geochemical Journal, 2013, 47(3): 309-319
CrossRef Google scholar
MatthewsA, PutlitzB, HamielY, et al. . Volatile Transport during the Crystallization of Anatectic Melts: Oxygen, Boron and Hydrogen Stable Isotope Study on the Metamorphic Complex of Naxos, Greece. Geochimica et Cosmochimica Acta, 2003, 67(17): 3145-3163
CrossRef Google scholar
MaulanaA, ChristyA G, EllisD J, et al. . Geochemistry of Eclogite- and Blueschist-Facies Rocks from the Bantimala Complex, South Sulawesi, Indonesia: Protolith Origin and Tectonic Setting. Island Arc, 2013, 22(4): 427-452
CrossRef Google scholar
MisraS, FroelichP N. Measurement of Lithium Isotope Ratios by Quadrupole-ICP-MS: Application to Seawater and Natural Carbonates. Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1524-1533
CrossRef Google scholar
MorigutiT, NakamuraE. High-Yield Lithium Separation and the Precise Isotopic Analysis for Natural Rock and Aqueous Samples. Chemical Geology, 1998, 145(1/2): 91-104
CrossRef Google scholar
MungallJ E. Kinetic Controls on the Partitioning of Trace Elements between Silicate and Sulfide Liquids. Journal of Petrology, 2002, 43(5): 749-768
CrossRef Google scholar
NishioY, NakaiS. Accurate and Precise Lithium Isotopic Determinations of Igneous Rock Samples Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Analytica Chimica Acta, 2002, 456(2): 271-281
CrossRef Google scholar
PageL R. Pegmatite Investigations, 1942–1945, Black Hills, South Dakota, 1953 228
ParkinsonI, HammondS, JamesR, et al. . High-Temperature Lithium Isotope Fractionation: Insights from Lithium Isotope Diffusion in Magmatic Systems. Earth and Planetary Science Letters, 2007, 257(3/4): 609-621
CrossRef Google scholar
ParmigianiA, FaroughiS, HuberC, et al. . Bubble Accumulation and Its Role in the Evolution of Magma Reservoirs in the Upper Crust. Nature, 2016, 532: 492-495
CrossRef Google scholar
Penniston-DorlandS, LiuX M, RudnickR L. Lithium Isotope Geochemistry. Non-Traditional Stable Isotopes, 2017 165-218
CrossRef Google scholar
PhelpsP R, LeeC T A, MortonD M. Episodes of Fast Crystal Growth in Pegmatites. Nature Communications, 2020, 11: 4986
CrossRef Google scholar
PhelpsP R, LeeC T A. Extreme Lithium Isotope Fractionation in Quartz from the Stewart Pegmatite. Geochimica et Cosmochimica Acta, 2022, 336: 208-218
CrossRef Google scholar
Pogge von StrandmannP A E, FringsP J, MurphyM J. Lithium Isotope Behaviour during Weathering in the Ganges Alluvial Plain. Geochimica et Cosmochimica Acta, 2017, 198: 17-31
CrossRef Google scholar
Pogge von StrandmannP A E, KasemannS A, WimpennyJ B. Lithium and Lithium Isotopes in Earth’s Surface Cycles. Elements, 2020, 16(4): 253-258
CrossRef Google scholar
QiH P, TaylorP D P, BerglundM, et al. . Calibrated Measurements of the Isotopic Composition and Atomic Weight of the Natural Li Isotopic Reference Material IRMM-016. International Journal of Mass Spectrometry and Ion Processes, 1997, 171(1/2/3): 263-268
CrossRef Google scholar
RaimbaultL. Composition of Complex Lepidolite-Type Granitic Pegmatites and of Constituent Columbite-Tantalite, Chedeville, Massif Central, France. The Canadian Mineralogist, 1998, 36(2): 563-583
RichterF, ChaussidonM, WatsonE B, et al. . Lithium Isotope Fractionation by Diffusion in Minerals Part 2: Olivine. Geochimica et Cosmochimica Acta, 2017, 219: 124-142
CrossRef Google scholar
RichterF M, DauphasN, TengF Z. Non-Traditional Fractionation of Non-Traditional Isotopes: Evaporation, Chemical Diffusion and Soret Diffusion. Chemical Geology, 2009, 258(1/2): 92-103
CrossRef Google scholar
RichterF, WatsonB, ChaussidonM, et al. . Lithium Isotope Fractionation by Diffusion in Minerals. Part 1: Pyroxenes. Geochimica et Cosmochimica Acta, 2014, 126: 352-370
CrossRef Google scholar
RichterF M, DavisA M, DePaoloD J, et al. . Isotope Fractionation by Chemical Diffusion between Molten Basalt and Rhyolite. Geochimica et Cosmochimica Acta, 2003, 67(20): 3905-3923
CrossRef Google scholar
RichterF M, LiangY, DavisA M. Isotope Fractionation by Diffusion in Molten Oxides. Geochimica et Cosmochimica Acta, 1999, 63(18): 2853-2861
CrossRef Google scholar
RichterS, KühnH, AregbeY, et al. . Improvements in Routine Uranium Isotope Ratio Measurements Using the Modified Total Evaporation Method for Multi-Collector Thermal Ionization Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26(3): 550-564
CrossRef Google scholar
Roda-RoblesE, Pesquera-PérezA, SimmonsW B, et al. . Evidence for Internal Fractionation from Li Isotopes in Tourmaline and Mica in the Berry-Havey Rare-Element Pegmatite (Maine, USA). The Canadian Mineralogist, 2019, 57(5): 779-782
CrossRef Google scholar
Roda-RoblesE, PesqueraA, Gil-CrespoP P, et al. . The Puentemocha Beryl-Phosphate Granitic Pegmatite, Salamanca, Spain: Internal Structure, Petrography and Mineralogy. The Canadian Mineralogist, 2012, 50(6): 1573-1587
CrossRef Google scholar
RomerR L, MeixnerA. Lithium and Boron Isotopic Fractionation in Sedimentary Rocks during Metamorphism—The Role of Rock Composition and Protolith Mineralogy. Geochimica et Cosmochimica Acta, 2014, 128: 158-177
CrossRef Google scholar
RomerR L, MeixnerA, FörsterH J. Lithium and Boron in Late-Orogenic Granites—Isotopic Fingerprints for the Source of Crustal Melts?. Geochimica et Cosmochimica Acta, 2014, 131: 98-114
CrossRef Google scholar
RomerR L, MeixnerA, HahneK. Lithium and Boron Isotopic Composition of Sedimentary Rocks—The Role of Source History and Depositional Environment: A 250 Ma Record from the Cadomian Orogeny to the Variscan Orogeny. Gondwana Research, 2014, 26(3/4): 1093-1110
CrossRef Google scholar
RubinA E, CooperK M, TillC B, et al. . Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals. Science, 2017, 356(6343): 1154-1156
CrossRef Google scholar
SchaubleE A. Applying Stable Isotope Fractionation Theory to New Systems. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 65-111
CrossRef Google scholar
SchönbächlerM, FehrM A. Basics of Ion Exchange Chromatography for Selected Geological Applications. Treatise on Geochemistry, 2014 Amsterdam Elsevier 123-146
CrossRef Google scholar
SeitzH M, BreyG P, LahayeY, et al. . Lithium Isotopic Signatures of Peridotite Xenoliths and Isotopic Fractionation at High Temperature between Olivine and Pyroxenes. Chemical Geology, 2004, 212(1/2): 163-177
CrossRef Google scholar
SimmonsW B S, WebberK L. Pegmatite Genesis: State of the Art. European Journal of Mineralogy, 2008, 20(4): 421-438
CrossRef Google scholar
SirbescuM L C, NabelekP I. Crystallization Conditions and Evolution of Magmatic Fluids in the Harney Peak Granite and Associated Pegmatites, Black Hills, South Dakota—Evidence from Fluid Inclusions. Geochimica et Cosmochimica Acta, 2003, 67(13): 2443-2465
CrossRef Google scholar
SoltayL G, HendersonG S. The Structure of Lithium-Containing Silicate and Germanate Glasses. The Canadian Mineralogist, 2005, 43(5): 1643-1651
CrossRef Google scholar
SteinmannL K, OeserM, HornI, et al. . In situ High-Precision Lithium Isotope Analyses at Low Concentration Levels with Femtosecond-LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1447-1458
CrossRef Google scholar
SuB X, GuX Y, DelouleE, et al. . Potential Orthopyroxene, Clinopyroxene and Olivine Reference Materials for in situ Lithium Isotope Determination. Geostandards and Geoanalytical Research, 2015, 39(3): 357-369
CrossRef Google scholar
SunH, GaoY J, XiaoY L, et al. . Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 2016, 439: 71-82
CrossRef Google scholar
SunH, XiaoY L, GaoY J, et al. . Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): 3782-3787
CrossRef Google scholar
TanD B, XiaoY L, SunH, et al. . Lithium Isotopic Compositions of Post-Collisional Mafic-Ultramafic Rocks from Dabieshan, China: Implications for Recycling of Deeply Subducted Continental Crust. Lithos, 2020, 352: 105327
CrossRef Google scholar
TanD B, XiaoY L, DaiL Q, et al. . Differentiation between Carbonate and Silicate Metasomatism Based on Lithium Isotopic Compositions of Alkali Basalts. Geology, 2022, 50(10): 1150-1155
CrossRef Google scholar
TanH Q, F Q, LiC, et al. . Genetic Linking between Pegmatite-Type Veined Molybdenum Deposit and Dichishan Highly Differentiated Granite in West Sichuan. Earth Science, 2023, 48(11): 3978-3994 (in Chinese with English Abstract)
TangY J, ZhangH F, YingJ F. Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 2007, 49(4): 374-388
CrossRef Google scholar
TangY J, ZhangH F, NakamuraE, et al. . Lithium Isotopic Systematics of Peridotite Xenoliths from Hannuoba, North China Craton: Implications for Melt-Rock Interaction in the Considerably Thinned Lithospheric Mantle. Geochimica et Cosmochimica Acta, 2007, 71(17): 4327-4341
CrossRef Google scholar
TangY J, ZhangH F, DelouleE, et al. . Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 2012, 149: 79-90
CrossRef Google scholar
TangY J, ZhangH F, YingJ F. A Brief Review of Isotopically Light Li—A Feature of the Enriched Mantle?. International Geology Review, 2010, 52(9): 964-976
CrossRef Google scholar
TangY J, ZhangH F, NakamuraE, et al. . Multistage Melt/Fluid-Peridotite Interactions in the Refertilized Lithospheric Mantle beneath the North China Craton: Constraints from the Li-Sr-Nd Isotopic Disequilibrium between Minerals of Peridotite Xenoliths. Contributions to Mineralogy and Petrology, 2011, 161(6): 845-861
CrossRef Google scholar
TengF Z, RudnickR L, McDonoughW F, et al. . Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 2009, 262(3/4): 370-379
CrossRef Google scholar
TengF Z, McDonoughW F, RudnickR L, et al. . Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 2004, 68(20): 4167-4178
CrossRef Google scholar
TengF Z, McDonoughW F, RudnickR L, et al. . Diffusion-Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 2006, 243(3/4): 701-710
CrossRef Google scholar
TengF Z, McDonoughW F, RudnickR L, et al. . Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 2006, 91(10): 1488-1498
CrossRef Google scholar
TengF Z, RudnickR L, McDonoughW F, et al. . Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 2008, 255(1/2): 47-59
CrossRef Google scholar
ThomasR, DavidsonP. The Missing Link between Granites and Granitic Pegmatites. Journal of Geosciences, 2013, 58(2): 183-200
CrossRef Google scholar
ThomasR, DavidsonP. Revisiting Complete Miscibility between Silicate Melts and Hydrous Fluids, and the Extreme Enrichment of some Elements in the Supercritical State—Consequences for the Formation of Pegmatites and Ore Deposits. Ore Geology Reviews, 2016, 72: 1088-1101
CrossRef Google scholar
TianH C, TianS H, HouZ Q, et al. . Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Post-Collisional Adakitic Rocks. Geochimica et Cosmochimica Acta, 2022, 332: 19-32
CrossRef Google scholar
TianS H, ZhaoY, HouZ Q, et al. . Lithium Isotopic Composition and Concentration of Himalayan Leucogranites and the Indian Lower Continental Crust. Lithos, 2017, 284/285: 416-428
CrossRef Google scholar
TischendorfG, GottesmannB, FörsterH J, et al. . On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 1997, 61(409): 809-834
CrossRef Google scholar
TomascakP B. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 153-195
CrossRef Google scholar
TomascakP B, CarlsonR W, ShireyS B. Accurate and Precise Determination of Li Isotopic Compositions by Multi-Collector Sector ICP-MS. Chemical Geology, 1999, 158(1/2): 145-154
CrossRef Google scholar
TomascakP B, TeraF, HelzR T, et al. . The Absence of Lithium Isotope Fractionation during Basalt Differentiation: New Measurements by Multicollector Sector ICP-MS. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910
CrossRef Google scholar
TomascakP B, MagnaT, DohmenR. Advances in Lithium Isotope Geochemistry, 2016 205
CrossRef Google scholar
TrochJ, HuberC, BachmannO. The Physical and Chemical Evolution of Magmatic Fluids in Near-Solidus Silicic Magma Reservoirs: Implications for the Formation of Pegmatites. American Mineralogist, 2022, 107(2): 190-205
CrossRef Google scholar
Van LichterveldeM, GrégoireM, LinnenR L, et al. . Trace Element Geochemistry by Laser Ablation ICP-MS of Micas Associated with Ta Mineralization in the Tanco Pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 2008, 155(6): 791-806
CrossRef Google scholar
Van LichterveldeM, HoltzF, HancharJ M. Solubility of Manganotantalite, Zircon and Hafnon in Highly Fluxed Peralkaline to Peraluminous Pegmatitic Melts. Contributions to Mineralogy and Petrology, 2010, 160(1): 17-32
CrossRef Google scholar
VekslerI V. Liquid Immiscibility and Its Role at the Magmatic-Hydrothermal Transition: A Summary of Experimental Studies. Chemical Geology, 2004, 210(1/2/3/4): 7-31
CrossRef Google scholar
VigierN, GislasonS R, BurtonK W, et al. . The Relationship between Riverine Lithium Isotope Composition and Silicate Weathering Rates in Iceland. Earth and Planetary Science Letters, 2009, 287(3/4): 434-441
CrossRef Google scholar
WalderA J, FreedmanP A. Communication. Isotopic Ratio Measurement Using a Double Focusing Magnetic Sector Mass Analyser with an Inductively Coupled Plasma as an Ion Source. Journal of Analytical Atomic Spectrometry, 1992, 7(3): 571
CrossRef Google scholar
WalkerR J, HansonG N, PapikeJ J. Trace Element Constraints on Pegmatite Genesis: Tin Mountain Pegmatite, Black Hills, South Dakota. Contributions to Mineralogy and Petrology, 1989, 101: 290-300
CrossRef Google scholar
WangW, JiangS Y, XiaoY L. Fluid-Rock Interaction Effects on Li Isotope Behavior in Continental Geothermal Systems. Chemical Geology, 2023, 631: 121525
CrossRef Google scholar
WebsterJ D, HollowayJ R, HervigR L. Partitioning of Lithophile Trace Elements between H2O and H2O + CO Fluids and Topaz Rhyolite Melt. Economic Geology, 1989, 84(1): 116-134
CrossRef Google scholar
WengerM, ArmbrusterT. Crystal Chemistry of Lithium: Oxygen Coordination and Bonding. European Journal of Mineralogy, 1991, 3(2): 387-400
CrossRef Google scholar
WiedenbeckM, TrumbullR B, RosnerM, et al. . Tourmaline Reference Materials for the in situ Analysis of Oxygen and Lithium Isotope Ratio Compositions. Geostandards and Geoanalytical Research, 2021, 45(1): 97-119
CrossRef Google scholar
WolfM, RomerR L, GlodnyJ. Isotope Disequilibrium during Partial Melting of Metasedimentary Rocks. Geochimica et Cosmochimica Acta, 2019, 257: 163-183
CrossRef Google scholar
WunderB, MeixnerA, RomerR L, et al. . Lithium Isotope Fractionation between Li-Bearing Staurolite, Li-Mica and Aqueous Fluids: An Experimental Study. Chemical Geology, 2007, 238(3/4): 277-290
CrossRef Google scholar
WunderB, MeixnerA, RomerR L, et al. . Temperature-Dependent Isotopic Fractionation of Lithium between Clinopyroxene and High-Pressure Hydrous Fluids. Contributions to Mineralogy and Petrology, 2006, 151(1): 112-120
CrossRef Google scholar
WunderB, MeixnerA, RomerR L, et al. . Li-Isotope Fractionation between Silicates and Fluids: Pressure Dependence and Influence of the Bonding Environment. European Journal of Mineralogy, 2011, 23(3): 333-342
CrossRef Google scholar
XiangL, RomerR L, GlodnyJ, et al. . Li and B Isotopic Fractionation at the Magmatic-Hydrothermal Transition of Highly Evolved Granites. Lithos, 2020, 376/377: 105753
CrossRef Google scholar
YamajiK, MakitaY, WatanabeH, et al. . Theoretical Estimation of Lithium Isotopic Reduced Partition Function Ratio for Lithium Ions in Aqueous Solution. The Journal of Physical Chemistry A, 2001, 105(3): 602-613
CrossRef Google scholar
YangA, LinJ, LiuY S, et al. . Development of Synthetic Clinopyroxene Reference Materials for in situ Lithium Isotope Measurement by LA-MC-ICP-MS. Geostandards and Geoanalytical Research, 2023, 47(3): 535-546
CrossRef Google scholar
YeX Y, LiB, ChenX D, et al. . Lithium Isotopic Systematics and Numerical Simulation for Highly-Fractionated Granite-Pegmatite System: Implications for the Pegmatite-Type Rare-Metal Mineralization. Ore Geology Reviews, 2023, 163: 105722
CrossRef Google scholar
ZhangC X, ZhaoH, ZhangW, et al. . A High Performance Method for the Accurate and Precise Determination of Silicon Isotopic Compositions in Bulk Silicate Rock Samples Using Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2020, 35(9): 1887-1896
CrossRef Google scholar
ZhangH J, TianS H, WangD H, et al. . Lithium Isotope Behavior during Magmatic Differentiation and Fluid Exsolution in the Jiajika Granite-Pegmatite Deposit, Sichuan, China. Ore Geology Reviews, 2021, 134: 104139
CrossRef Google scholar
ZhaoZ, YangX Y, LiW Y, et al. . Petrogenesis of the Granite Related to the Baishaziling Sn Deposit, Dayishan Ore Field, Southern China. Geochemistry, 2022, 82(2): 125873
CrossRef Google scholar
ZhaoZ, YangX Y, LuY Y, et al. . Geochemistry and Boron Isotope Compositions of Tourmalines from the Granite-Greisen-Quartz Vein System in Dayishan Pluton, Southern China: Implications for Potential Mineralization. American Mineralogist, 2022, 107(3): 495-508
CrossRef Google scholar
ZhaoZ, YangX Y, ZhangT Y, et al. . Geochemical Characteristics and Boron Isotopes of Tourmaline from the Baishaziling Tin Deposit, Nanling Range: Constraints on Magmatic-Hydrothermal Processes. Ore Geology Reviews, 2022, 142: 104695
CrossRef Google scholar
ZhaoZ, YangX Y, LiuQ Y, et al. . In-situ Boron Isotopic and Geochemical Compositions of Tourmaline from the Shangbao Nb-Ta Bearing Monzogranite, Nanling Range: Implication for Magmatic-Hydrothermal Evolution of Nb and Ta. Lithos, 2021, 386/387: 106010
CrossRef Google scholar
ZhaoZ, YangX Y, LuS M, et al. . Genesis of Late Cretaceous Granite and Its Related Nb-Ta-W Mineralization in Shangbao, Nanling Range: Insights from Geochemistry of Whole-Rock and Nb-Ta Minerals. Ore Geology Reviews, 2021, 131: 103975
CrossRef Google scholar
ZhengY. Does the Mantle Contribute to Granite Petrogenesis?. Journal of Earth Science, 2022, 33(5): 1320-1320
CrossRef Google scholar
ZhouJ S, WangQ, XuY G, et al. . Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 2021, 584: 120484
CrossRef Google scholar
ZhuZ Y, YangT, ZhuX K. Achieving Rapid Analysis of Li Isotopes in High-Matrix and Low-Li Samples with MC-ICP-MS: New Developments in Sample Preparation and Mass Bias Behavior of Li in ICPMS. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1503-1513
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/