Eocene Weathering Oscillations Imprinted in Marl Mineral and Geochemical Record, Dinaric Foreland Basin, Croatia

Marija Horvat , Nenad Tomašić , Dunja Aljinović , Damir Bucković , Stjepan Ćorić , Vlasta Ćosović , Igor Felja , Ines Galović , Željko Ištuk , Štefica Kampić , Dražen Kurtanjek , Đurđica Pezelj

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (3) : 1236 -1250.

PDF
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (3) : 1236 -1250. DOI: 10.1007/s12583-023-1913-2
Hydrogeology and Environmental Geology

Eocene Weathering Oscillations Imprinted in Marl Mineral and Geochemical Record, Dinaric Foreland Basin, Croatia

Author information +
History +
PDF

Abstract

Hemipelagic to pelagic (H/P) marls, representing pelitic deposits, accumulated within the foredeep sub-basin of the Dinaric Foreland Basin (northern Neotethyan margin, present-day Croatia) during the Middle to Late Eocene. Syn-sedimentary tectonic movements, paleogeographic position and exchanges of short-lived hyperthermal episodes affected the sedimentation and related mineral and geochemical record of these deposits. Mineral (clay) assemblages bear signature of prevailing physical weathering with significant illite and chlorite content, but climatic seasonality is suggested by smectite-interlayered phases and sporadical increase of kaolinite content. Illite crystallinity varies significantly, and the lowest crystallinity is recorded by the Lutetian samples. Illite chemistry index is always bellow 0.5, being characteristic for Fe-Mg-rich illite. The geochemical records are the most prominent (CIA up to 76, CIW up to 91) for the Istrian Lutetian (42.3–40.5 Ma), but also for Priabonian (35.8–34.3 Ma) samples of Hvar Island. The ICV values (the lowest 1.40 and the highest 10.85) of all studied samples fall above PAAS (ICV = 0.85) and point to their chemical immaturity. The Ga/Rb ratios are lower than 0.2 and K2O/Al2O3 ratios are also low (0.16–0.22), implying transition between cold and dry, and warm and humid climate, obviously trending among several warming episodes.

Keywords

mineral and geochemical proxies / marls / Eocene / Dinaric Foreland Basin / climate change / geochemistry

Cite this article

Download citation ▾
Marija Horvat, Nenad Tomašić, Dunja Aljinović, Damir Bucković, Stjepan Ćorić, Vlasta Ćosović, Igor Felja, Ines Galović, Željko Ištuk, Štefica Kampić, Dražen Kurtanjek, Đurđica Pezelj. Eocene Weathering Oscillations Imprinted in Marl Mineral and Geochemical Record, Dinaric Foreland Basin, Croatia. Journal of Earth Science, 2025, 36(3): 1236-1250 DOI:10.1007/s12583-023-1913-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akul’shinaE P. Method for Determing Conditions of Weathering and Postsedimentary Transformations in Aluminous Minerals. Glinistye Mineral Kak Pokazateli Uslovii Litogeneza, 1976 9-38

[2]

AljinovićD, JurakV, MileusnićM, et al.. The Origin and Composition of Flysch Deposits as an Attribute to the Excessive Erosion of the Slani Potok Valley (Salty Creek), Croatia. Geologia Croatica, 2010, 63(3): 313-322

[3]

BabićL, ZupaničJ. Evolution of a River-Fed Foreland Basin Fill: The North Dalmatian Flysch Revisited (Eocene, Outer Dinarides). Natura Croatica, 2008, 17(4): 357-374

[4]

BabićL, KučenjakM H, ĆorićS, et al.. The Middle Eocene Age of the Supposed Late Oligocene Sediments in the Flysch of the Pazin Basin (Istria, Outer Dinarides). Natura Croatica, 2007, 16(2): 83-102

[5]

BallingP, TomljenovićB, SchmidS M, et al.. Contrasting Along-Strike Deformation Styles in the Central External Dinarides Assessed by Balanced Cross-Sections: Implications for the Tectonic Evolution of Its Paleogene Flexural Foreland Basin System. Global and Planetary Change, 2021, 205: 103587

[6]

BerggrenW A, PearsonP N. A Revised Tropical to Subtropical Paleogene Planktonic Foraminiferal Zonation. The Journal of Foraminiferal Research, 2005, 35(4): 279-298

[7]

BijlP K, HoubenA J P, SchoutenS, et al.. Transient Middle Eocene Atmospheric CO2 and Temperature Variations. Science, 2010, 330(6005): 819-821

[8]

ButterlinJ, VrielynckB, BignotG, et al. DecourtJ, RicouL E, VrielynckB, et al.. Lutetian (46–40 Ma). Atlas Tethys Palaeoenvironmental Maps, 1993 Paris Gauthier-Villars 197-209

[9]

CabréS P, ValeroL, SpangenbergJ, et al.. Fluvio-Deltaic Record of Increased Sediment Transport during the Middle Eocene Climatic Optimum (MECO), Southern Pyrenees, Spain. Climate of the Past, 2023, 19(3): 533-554

[10]

ChamleyH ParkerA, SellwoodB W. Clay Mineral Diagenesis. Quantitative Diagenesis: Recent Developments and Applications to Reservoir Geology, 1994 Dordrecht Springer Netherlands 161-188

[11]

ChenZ L, DingZ L, YangS L, et al.. Increased Precipitation and Weathering across the Paleocene-Eocene Thermal Maximum in Central China. Geochemistry, Geophysics, Geosystems, 2016, 17(6): 2286-2297

[12]

CondieK C. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 1993, 104(1/2/3/4): 1-37

[13]

CoxR, LoweD R, CullersR L. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940

[14]

ĆosovićV, DrobneK, MoroA. Paleoenvironmental Model for Eocene Foraminiferal Limestones of the Adriatic Carbonate Platform (Istrian Peninsula). Facies, 2004, 50(1): 61-75

[15]

ĆosovićV, MarjanacT, DrobneK, et al. McCannT, et al.. Outer Dinarides: Eastern Adriatic Coast. Paleogene and Neogene. The Geology of Central Europe, Volume 2: Mesozoic and Cenozoic, 2008 London The Geological Society London 1031-1139

[16]

ĆosovićV, MrinjekE, NemecW, et al.. Development of Transient Carbonate Ramps in an Evolving Foreland Basin. Basin Research, 2018, 30(4): 746-765

[17]

Croatian Geological Survey Geological Map of the Republic of Croatia 1: 300 000, 2009 Zagreb Croatian Geological Survey, Department of Geology

[18]

D’OnofrioR, ZakyA S, FrontaliniF, et al.. Impact of the Middle Eocene Climatic Optimum (MECO) on Foraminiferal and Calcareous Nannofossil Assemblages in the Neo-Tethyan Baskil Section (Eastern Turkey): Paleoenvironmental and Paleoclimatic Reconstructions. Applied Sciences, 2021, 11(23): 11339

[19]

DrobneK, BartolM, Premec FučekV, et al.. Microfauna and Nannoplankton below the Paleocene/Eocene Transition in Hemipelagic Sediments at the Southern Slope of Mt. Nanos (NW Part of the Paleogene Adriatic Carbonate Platform, Slovenia). Austrian Journal of Earth Sciences, 2012, 105(1): 208-223

[20]

FagelN Hillaire-MarcelC, de VernalA. Clay Minerals, Deep Circulation and Climate. Proxies in Late Cenozoic Paleoceanography, 2007 139-184 1

[21]

FedoC M, NesbittH W, YoungG M. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 1995, 23(10): 921-924

[22]

Galović, I., Lukić, R., Pezelj, Đ., et al., under review. Record of Mid-Eocene Warming Events in the Istrian Paleogene Basin, Neotethys (Outer Dinarides, Croatia). Journal of Micropalaeontology

[23]

GingeleF X, De DeckkerP, HillenbrandC D. Clay Mineral Distribution in Surface Sediments between Indonesia and NW Australia—Source and Transport by Ocean Currents. Marine Geology, 2001, 179(3/4): 135-146

[24]

GoboK, MrinjekE, ĆosovićV. Mass-Transport Deposits and the Onset of Wedge-Top Basin Development: an Example from the Dinaric Foreland Basin, Croatia. Journal of Sedimentary Research, 2020, 90(11): 1527-1548

[25]

GoldichS S. A Study in Rock-Weathering. The Journal of Geology, 1938, 46(1): 17-58

[26]

GrimaniI, ŠušnjarM, BukovacJ, et al. Osnovna Geološka Karta SFRJ 1: 100 000, Tumač za list Crikvenica L33-102, 1973 Beograd Geološki Zavod Zagreb, Savezni Geološki Zavod (in Croatian)

[27]

ICDD Powder Diffraction File 2004, Database Sets 1–54, 2004 Newtown Square, Pennsylvania, USA International Centre for Diffraction Data (ICDD)

[28]

HalamićJ, PehZ, MikoS, et al.. Geochemical Atlas of Croatia: Environmental Implications and Geodynamical Thread. Journal of Geochemical Exploration, 2012, 115: 35-46

[29]

HandyM R, UstaszewskiK, KisslingE. Reconstructing the Alps–Carpathians–Dinarides as a Key to Understanding Switches in Subduction Polarity, Slab Gaps and Surface Motion. International Journal of Earth Sciences, 2015, 104(1): 1-26

[30]

HarnoisL. The CIW Index: A New Chemical Index of Weathering. Sedimentary Geology, 1988, 55(3): 319-322

[31]

HorvatM, AljinovićD, TomašićN, et al., et al. PeytchevaI, LazarovaA, GranchovskiG, et al., et al.. Introduction to the Bulk Chemistry of the Eocene Hemipelagic/Pelagic Deposits in the Dinaric Foreland Basin. XXII International Congress of the Carpathian-Balkan Geological Association (CBGA), Sept. 7–11, 2022, 2022 86-86

[32]

LiuZ F, ColinC, HuangW, et al.. Clay Minerals in Surface Sediments of the Pearl River Drainage Basin and Their Contribution to the South China Sea. Chinese Science Bulletin, 2007, 52(8): 1101-1111

[33]

S, YeC C, FangX M, et al.. Middle to Late Eocene Chemical Weathering History in the Southeastern Tibetan Plateau and Its Response to Global Cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110136

[34]

LucianiV, GiusbertiL, AgniniC, et al.. Ecological and Evolutionary Response of Tethyan Planktonic Foraminifera to the Middle Eocene Climatic Optimum (MECO) from the Alano Section (NE Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1/2): 82-95

[35]

LugovićB, AltherrR, MarjanacT, et al.. Orogenic Signatures in Late Cenozoic Volcanic Rocks from the Northern External Dinarides, Croatia. Acta Vulcanologica, 1998, 10(1): 55-65

[36]

Lužar-OberiterB, HochuliP, BabićL, et al.. Climatic Cycles Recorded in the Middle Eocene Hemipelagites from a Dinaric Foreland Basin of Istria (Croatia). Geologica Carpathica, 2010, 61(3): 193-200

[37]

MarinčićS. Tectonic Structure of the Island of Hvar (Southern Croatia). Geologia Croatica, 2010, 50: 57-77

[38]

MarjanacT, ĆosovićV. Tertiary Depositional History of Eastern Adriatic Realm. Vijesti Hrvatskoga Geološkog Društva, 2000, 37(2): 93-103

[39]

MarjanacT, BabacD, BenićJ, et al. HottingerL, DrobneK, et al.. Eocene Carbonate Sediments and Sea-Level Changes on the NE Part of Adriatic Carbonate Platform (Island of Hvar and Pelješac Penninsula, Croatia). Paleogene Shallow Benthos of the Tethys, 2, 1998 Ljubjana Slovenian Academy of Sciences and Art 243-254

[40]

McLennanS M. Weathering and Global Denudation. The Journal of Geology, 1993, 101: 295-303

[41]

MethnerK, CampaniM, FiebigJ, et al.. Middle Miocene Long-Term Continental Temperature Change in and out of Pace with Marine Climate Records. Scientific Reports, 2020, 10: 7989

[42]

MooreD M, ReynoldsR C X-Ray Diffraction and Identification and Analysis of Clay Minerals, 1997 2nd Edition New York Oxford University Press

[43]

NesbittH W, YoungG M. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 1982, 299: 715-717

[44]

NesbittH W, YoungG M. Prediction of some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534

[45]

Panalytical X’Pert High Score Plus, Version 2.1, 2004 Almelo, The Netherlands Panalytical

[46]

PetrinjakK, BudićM, BergantS, et al.. Megabeds in Istrian Flysch as Markers of Synsedimentary Tectonics within the Dinaric Foredeep (Croatia). Geologia Croatica, 2021, 74: 99-120

[47]

PlacerL, VrabecM, CelarcB. The Bases for Understanding of the NW Dinarides and Istria Peninsula Tectonics. Geologija, 2010, 53(1): 55-86

[48]

PrtoljanB, BergantS, KrstulovićM, et al.. “Eocene Flysch” of the Konavle Area (SE Croatia)—Is It really Eocene and is it really Flysch?. 27 IAS Meeting of Sedimentologists, Sept. 20–23, 2009, 2009

[49]

Rivero-CuestaL, WesterholdT, AlegretL. The Late Lutetian Thermal Maximum (Middle Eocene): First Record of Deep-Sea Benthic Foraminiferal Response. Palaeogeography Palaeoclimatology Palaeoecology, 2020, 545: 109637

[50]

RoyD K, RoserB P. Climatic Control on the Composition of Carboniferous–Permian Gondwana Sediments, Khalaspir Basin, Bangladesh. Gondwana Research, 2013, 23(3): 1163-1171

[51]

SaxenaS, ChakrabortyA, GalovićI, et al.. New Insights into the Earliest Occurrence, Possible Evolutionary Lineage, Palaeogeography and Palaeoclimatic Implications of Nicklithus Amplificus: Evidence from the Adriatic Sea, Indian Ocean and Paratethys. Marine Micropaleontology, 2022, 172: 102111

[52]

SchmidS M, BernoulliD, FügenschuhB, et al.. The Alpine-Carpathian-Dinaridic Orogenic System: Correlation and Evolution of Tectonic Units. Swiss Journal of Geosciences, 2008, 101(1): 139-183

[53]

SchrollE, SauerD Beitrag zur Geochemie von Titan, Chrom, Nickel, Cobalt, Vanadium und Molyb din in Bauxitischen Gesteinen und das Problem der stofflichen Herkunft des Aluminiums. Travaux du ICSOBA, 1968, 5: 83-96

[54]

ŠiftarD. On the Chemism of Barite and on the some Conditions of the Barite Deposit Formatition in Gorski Kotar and Lika. Geološki Vjesnik, 1981, 34: 95-107

[55]

ŠpaničekJ, ĆosovićV, MrinjekE, et al.. Early Eocene Evolution of Carbonate Depositional Environments Recorded in the Čikola Canyon (North Dalmatian Foreland Basin, Croatia). Geologia Croatica, 2017, 70(1): 11-25

[56]

StampfliG M FinettiJ R. Plate Tectonics of the Apulia-Adria Microcontinents. CROP Project: Deep Seismic Exploration of the Central Mediterranean and Italy, 2005 Amsterdam Elsevier 747-766

[57]

ŠušnjarM, BukovacJ, NiklerL, et al. Osnovna Geološka Karta SFRJ 1: 100 000, List Crikvenica L33–102, 1970 Zagreb Institut za Geološka Istraživanja (1961–1969). Savezni geološki zavod, Beograd (in Croatian)

[58]

Tari-KovačićV. Geodynamics of the Middle Adriatic Offshore Area, Croatia, Based on Stratigraphic and Seismic Analysis of Paleogene Beds. Acta Geologica Hungarica, 1998, 41: 313-326

[59]

Tari-KovačićV, KalacK, LučićD, et al. HottingerL, DrobneK, et al.. Stratigraphic Analysis of Paleogene Beds in some Off-Shore Wells (Central Adriatic Area, Croatia). Paleogene Shallow Benthos of the Tethys, 2, 1998 Ljubljana Slovenian Academy of Sciences and Art 203-242

[60]

TaylorS, McLennanS The Continental Crust: Its Composition and Evolution, 1985 London Blackwell 312

[61]

ThiryM. Palaeoclimatic Interpretation of Clay Minerals in Marine Deposits: An Outlook from the Continental Origin. Earth-Science Reviews, 2000, 49(1/2/3/4): 201-221

[62]

van der PloegR, SelbyD, CramwincekelM, et al.. Middle Eocene Greenhouse Warming Facilitated by Diminished Weathering Feedback. Nature Communication, 2018, 9: 2877

[63]

van DijkJ, FernandezA, BernasconiS M, et al.. Spatial Pattern of Super-Greenhouse Warmth Controlled by Elevated Specific Humidity. Nature Geoscience, 2020, 13: 739-744

[64]

VlahovićI, TišljarJ, VelićI, et al.. Evolution of the Adriatic Carbonate Platform: Palaeogeography, Main Events and Depositional Dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(3/4): 333-360

[65]

VragovićM, GolubL J. Hornblenda-Andesite (Porphyrite) from G. Benkovac near Fužine, Gorskikotar. Acta Geologica, 1969, 46: 55-66

[66]

WeiG, LiX-H, LiuY, et al.. Geochemical Record of Chemical Weathering and Monsoon Climate Change since the Early Miocene in the South China Sea. Paleoceanography, 2006, 21: PA4214

[67]

WesterholdT, RöhlU, DonnerB, et al.. Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth’s Climate System?. Geochemistry, Geophysics, Geosystems, 2018, 19(1): 73-82

[68]

ZachosJ C, DickensG R, ZeebeR E. An Early Cenozoic Perspective on Greenhouse Warming and Carbon-Cycle Dynamics. Nature, 2008, 451: 279-283

[69]

ZamagniJ, MuttiM, KoširA. Evolution of Shallow Benthic Communities during the Late Paleocene–Earliest Eocene Transition in the Northern Tethys (SW Slovenia). Facies, 2008, 54: 25-43

[70]

ŽivkovićS, BabićL. Paleoceanographic Implications of Smaller Benthic and Planktonic Foraminifera from the Eocene Pazin Basin (Coastal Dinarides, Croatia). Facies, 2003, 49: 49-60

[71]

ŽivkovićS, GlumacB. Paleoenvironmental Reconstruction of the Middle Eocene Trieste-Pazin Basin (Croatia) from Benthic Foraminiferal Assemblages. Micropaleontology, 2007, 53(4): 285-310

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

324

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/