Geochemistry and Detrital Zircon U-Pb Chronology of Late Mesozoic Strata in the Western Erlian Basin and Their Indication to Provenance and Uranium Metallization
Reng-An Yu , Tong Li , Qiang Zhu , Qinghong Si , Jiarun Tu , Shenglong Peng , Yongxiang Tang
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (5) : 2058 -2074.
Geochemistry and Detrital Zircon U-Pb Chronology of Late Mesozoic Strata in the Western Erlian Basin and Their Indication to Provenance and Uranium Metallization
The Erlian Basin is one of the most important multi-energy basins in China. The Baiyanhua area of the Chuanjing depression in the western Erlian Basin has recently become a favorable area for new progress in sandstone-type uranium prospecting. However, the Cretaceous source-to-sink evolution of the Chuanjing depression in the Erlian Basin is poorly known. This paper presents the systematic geochemical and zircon U-Pb studies on the Saihantala Formation and Erlian Formation in the Baiyanhua area. The data obtained are functionally important for revealing the provenance and tectonic setting of the source rocks. The results show that the upper part of the Saihantala Formation and the lower part of the Erlian Formation are mainly composed of felsic sedimentary rocks. The source rocks originated from a continental margin arc environment in terms of tectonic setting. The detrital zircons ages have the dominant populations at ca. 250–270 Ma, with two subdominant age groups at ca. 1 400–1 800 and 1 900–2 100 Ma, respectively. Combined with the tectono-sedimentary evolution of the Chuanjing depression, we conclude that: (1) the provenance of the Cretaceous strata was mostly sourced from the Baiyanhua uplift; (2) the water depth became shallow in the Southern Sangendalai sag during the middle period of Saihantala, further preventing the formation of coal beds; (3) the formation of Baiyanhua uplift might provide the beneficial tectonic condition for uranium mineralization in the upper Saihantala Formation in southern Sangendalai sag. This is significant for us to understand the space allocation of coal and uranium in Chuanjing depression and evaluate the uranium metallogenic prospects in southern Sangendalai sag.
Erlian Basin / Saihantala Formation / detrital zircon / U-Pb geochronology / provenance / sandstone type uranium metallization / geochemistry / mineral doposits
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature
/
| 〈 |
|
〉 |