Geochemical and Hydrogeochemical Processes Determining Arsenic Presence in Rocks and Groundwater in the Southeastern Portion of El Bajío Guanajuatense, Guanajuato, Mexico

José Ivan Morales-Arredondo , María A. Armienta Hernández , Eduardo A. Lugo-Dorantes , Fátima Juárez-Aparicio , Francisco Romero , Zaknite I. Flores-Ocampo

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (6) : 2099 -2118.

PDF
Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (6) : 2099 -2118. DOI: 10.1007/s12583-022-1790-2
Hydrogeology and Environmental Geology

Geochemical and Hydrogeochemical Processes Determining Arsenic Presence in Rocks and Groundwater in the Southeastern Portion of El Bajío Guanajuatense, Guanajuato, Mexico

Author information +
History +
PDF

Abstract

Several aquifers located in North-Central Mexico have natural arsenic (As) concentrations higher than those allowed by national and international regulations; these aquifers are usually located in fractured volcanic environments that interact with sedimentary basins and have a carbonate basement. In this study, an evaluation of As in volcanic and sedimentary rocks collected at 13 sampling sites along the Sierra de Codornices (Guanajuato State, Central Mexico) was carried out. These geologic materials are representative of the dominant hydrogeologic environment. The As content is disseminated in volcanic rocks and the highest contents were obtained in felsic rocks; this information served to identify the hydrogeochemical processes related to the mobilization and transport of arsenic in the aquifer. The mobilization of As is a product of the dissolution of volcanic glass, a process involved in the alkaline desorption that occurs on As-containing mineral surfaces and possibly by the dissolution/desorption of Fe minerals and some clays, all these processes may be accelerated by the geothermal characteristics of the groundwater in the study area.

Cite this article

Download citation ▾
José Ivan Morales-Arredondo, María A. Armienta Hernández, Eduardo A. Lugo-Dorantes, Fátima Juárez-Aparicio, Francisco Romero, Zaknite I. Flores-Ocampo. Geochemical and Hydrogeochemical Processes Determining Arsenic Presence in Rocks and Groundwater in the Southeastern Portion of El Bajío Guanajuatense, Guanajuato, Mexico. Journal of Earth Science, 2024, 35(6): 2099-2118 DOI:10.1007/s12583-022-1790-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdrianoD C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2001 New York Springer-Verlag

[2]

Aguillón-RoblesA, Aranda-GómezJ J, Solorio-MunguíaJ G. Geology and Tectonics of a Set of Middle Oligocene rhyolite Domes in the Southern State of San Luis Potosi, Mexico. Revista Mexicana de Ciencias Geológicas, 1994, 11(1): 29-42

[3]

AlvaradoH M, YañezC F M. Informe Final de los Depósitos de Alunita Proyecto Comonfort, Municipios de Comonfort y Juventino Rosas, Gto, Archivo Técnico. Consejo de Recursos Minerales, 1993 1-140

[4]

AppeloC A J, PostmaD. Geochemistry, Groundwater and Pollution, 2005 Rotterdam Balkema

[5]

Aranda-GómezJ J, LevresseG. Active Sinking at the Bottom of the Rincón de Parangueo Maar (Guanajuato, México) and Its Probable Relation with Subsidence Faults at Salamanca and Celaya. Boletín de la Sociedad Geológica Mexicana, 2013, 65(1): 169-188

[6]

AribamB, AlamW, ThokchomB, et al. . ThokchomB, QiuP P, SinghP, et al. . Chapter 8 Water, Arsenic, and Climate Change. Water Conservation in the Era of Global Climate Change, 2021 167-190

[7]

ArmientaM A, SegoviaN. Arsenic and Fluoride in the Groundwater of Mexico. Environmental Geochemistry and Health, 2008, 30(4): 345-353

[8]

ArellanoA R V, PantojaJ, LedesmaO. Yacimientos de Minerales no Metálicos de la Región de Nautla, Municipio de Comonfort, Guanajuato. Informe Técnico Consejo de Recursos Naturales no Renovables, 1960 1-39

[9]

AsereT G, VerbekenK, TessemaD A, et al. . Adsorption of As (III) versus As(V) from Aqueous Solutions by Cerium-Loaded Volcanic Rocks. Environmental Science and Pollution Research, 2017, 24(25): 20446-20458

[10]

AWWA APHA WWF. Standard Methods for the Examination of Water and Wastewater, 2005 Washington, D. C. American Public health Association, The American Water Works Association, Association Water Environment Federation

[11]

Báez-PérezA, HuertaM E, VelázquezG J, et al. . PazF Y, CuevasR M, et al. . Acumulación y Flujo de Carbono en Vertisoles Cultivados en Labranza de Conservación. Estado actual del Conocimiento del ciclo del Carbono y sus Interacciones en México, 2011 México. D.F. Instituto Nacional de Ecología 204-211

[12]

BarranqueroR S, VarniM, VegaM, et al. . Arsenic, Fluoride and other Trace Elements in the Argentina Pampean Plain. Geologica Acta, 2017, 15: 187-200

[13]

BruesekeM E, CallicoatJ S, HamesW, et al. . Mid-Miocene Rhyolite Volcanism in Northeastern Nevada: The Jarbidge Rhyolite and Its Relationship to the Cenozoic Evolution of the Northern Great Basin (USA). Geological Society of America Bulletin, 2014, 126(7/8): 1047-1067

[14]

BundschuhJ, LitterM I, ParvezF, et al. . One Century of Arsenic Exposure in Latin America: A Review of History and Occurrence from 14 Countries. Science of the Total Environment, 2012, 429: 2-35

[15]

BundschuhJ, SchneiderJ, AlamM A, et al. . Seven Potential Sources of Arsenic Pollution in Latin America and Their Environmental and Health Impacts. Science of the Total Environment, 2021, 780: 146274

[16]

CardonaA, BanningA, Carrillo-RiveraJ J, et al. . Natural Controls Validation for Handling Elevated Fluoride Concentrations in Extraction Activated Tóthian Groundwater Flow Systems: San Luis Potosí, Mexico. Environmental Earth Sciences, 2018, 77(4): 121

[17]

CastellazziP, Arroyo-DomínguezN, MartelR, et al. . Land Subsidence in Major Cities of Central Mexico: Interpreting InSAR-Derived Land Subsidence Mapping with Hydrogeological Data. International Journal of Applied Earth Observation and Geoinformation, 2016, 47: 102-111

[18]

Carrera-HernándezJ J, Carreón-FreyreD, Cerca-MartínezM, et al. . Groundwater Flow in a Transboundary Fault-Dominated Aquifer and the Importance of Regional Modeling: The Case of the City of Querétaro, Mexico. Hydrogeology Journal, 2016, 24(2): 373-393

[19]

ChenH R, ZhangD R, LiQ, et al. . Release and Fate of as Mobilized via Bio-Oxidation of Arsenopyrite in Acid Mine Drainage: Importance of As/Fe/S Speciation and As(III) Immobilization. Water Research, 2022, 223: 118957

[20]

ClarkI. Groundwater Geochemistry and Isotopes, 2015 456

[21]

del Río Varela, P., Nieto-Samaniego, Á. F., Alaniz-Álvarez, S. A., et al., 2020. Geología y Estructura de Las Sierras de Guanajuato y Codornices, Mesa Central, México. Boletín de la Sociedad Geológica Mexicana, 72(1). https://doi.org/10.18268/bsgm2020v72n1a071019

[22]

CorbettG, LeachT. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization, 1998

[23]

De PabloL, DovalM, La IglesiaA, SorianoJ. CaK-Clinoptilolite, KNa-Chabazite, KNa-Heulandite, KNA-Errionite and Na-Phillipsite from Tuffaceous Rocks, Province of the Mesa Central, Mexico. Revista Mexicana de Ciencias Geológicas, 2014, 31(1): 116-126

[24]

EldersW A, NielsonD L, SchiffmanP, et al. . Hydrothermal Alteration and the Geochemical Evolution of Volcanic Geothermal Systems. Geothermics, 2014, 53: 134-153

[25]

EstellerM V, Domínguez-MarianiE, GarridoS E, et al. . Groundwater Pollution by Arsenic and other Toxic Elements in an Abandoned Silver Mine, Mexico. Environmental Earth Sciences, 2015, 74(4): 2893-2906

[26]

FanQ, WangL, FuY, et al. . Iron Redox Cycling in Layered Clay Minerals and Its Impact on Contaminant Dynamics: A Review. Science of the Total Environment, 2023, 855: 159003.10.1016/j.scitotenv.2022.159003

[27]

FournierR O. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 1977, 5(1/2/3/4): 41-50

[28]

GanY, RobinsonC, HarrisB, et al. . Microbially Mediated Redox Cycling of Arsenic in Groundwater: Insights from Experimental Studies and Thermodynamic Modeling. Environmental Science & Technology, 2014, 48(22): 13791-13798

[29]

García-VallésM, Martínez-ManentS, Fernández-TurielJ L, et al. . Mineralogical Indicators of Hydrothermal Alteration in Volcanic Rocks: The Case of Tridymite, Kaolinite, and Alunite Assemblages. Applied Geochemistry, 2015, 59: 72-83

[30]

GuoW, WuN, ZengJ, et al. . Influence of Microbial Degradation of Organic Matter on δ13C of Dissolved Inorganic Carbon in Groundwater Systems. Environmental Earth Sciences, 2013, 70(5): 2147-2158

[31]

HanselC M, BennerS G, FendorfS. Microbial and Geochemical Controls on Arsenic and Iron Transformations in Sediments. Geobiology, 2015, 13(3): 191-207

[32]

HoffmannT D, ReekstingB J, GebhardS. Bacteria-Induced Mineral Precipitation: a Mechanistic Review. Microbiology, 2021, 167(4): 001049

[33]

Huizar-AlvarezR, Mitre-SalazarL M, Marín-CórdovaS, et al. . Subsidence in Celaya, Guanajuato, Central Mexico: Implications for Groundwater Extraction and the Neotectonic Regime. Geofísica Internacional, 2011, 50(3): 255-270

[34]

Juárez-AparicioF. Evaluación de Rocas Calizas del Bajío Guanajuatense en la Remoción de Arsénico y Fluoruro en el agua Subterránea, 2019 113

[35]

JohannessonK H, TangJ W. Conservative Behavior of Arsenic and other Oxyanion-Forming Trace Elements in an Oxic Groundwater Flow System. Journal of Hydrology, 2009, 378(1/2): 13-28

[36]

KeatingE H, NewellD L, ViswanathanH, et al. . CO2/Brine Transport into Shallow Aquifers along Fault Zones. Environmental Science & Technology, 2013, 47(1): 290-297

[37]

KomorowiczI, BarałkiewiczD. Arsenic and Its Speciation in Water Samples by High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry: Last Decade Review. Talanta, 2011, 84(2): 247-261

[38]

Landa-ArreguínJ F A, Villanueva-EstradaR E, Rodríguez-DíazA A, et al. . Evidence of a New Geothermal Prospect in the Northern-Central Trans-Mexican Volcanic Belt: Rancho Nuevo, Guanajuato, Mexico. Journal of Iberian Geology, 2021, 47: 713-732

[39]

LiuH Y, XueY Y, YangT G, et al. . Fluid-Rock Interactions at Shallow Depths in Subduction Zone: Insights from Trace Elements and B Isotopic Composition of Metabasites from the Mariana Forearc. Lithos, 2022, 422/423: 106730

[40]

LiuZ W, CuiP X, CuiX C, et al. . Prediction of CO2 Solubility in NaCl Brine under Geological Conditions with an Improved Binary Interaction Parameter in the Søreide-Whitson Model. Geothermics, 2022, 105: 102544

[41]

López-AlvisJ, Carrera-HernándezJ J, LevresseG, et al. . Assessment of Groundwater Depletion Caused by Excessive Extraction through Groundwater Flow Modeling: The Celaya Aquifer in Central Mexico. Environmental Earth Sciences, 2019, 78(15): 482

[42]

LópezR E. Estudio Fotogeológico de la Región de Neutla-Comonfort, Gto. Informe Técnico Consejo de Recursos Naturales no Renovables, 1957 1-8

[43]

MandalB K, SuzukiK T. Arsenic around the World: A Review. Talanta, 2002, 58(1): 201-235

[44]

MasudaH. Arsenic Cycling in the Earth’s Crust and Hydrosphere: Interaction between Naturally Occurring Arsenic and Human Activities. Progress in Earth and Planetary Science, 2018, 5(1): 68

[45]

MaiC, GuoQ, YuanX, et al. . Effects of Microbial Activity on the δ13C of Dissolved Inorganic Carbon and Carbonate Precipitation in Karst Waters. Environmental Earth Sciences, 2014, 71(2): 817-829

[46]

MaoX M, DongY Q, HeY Y, et al. . The Effect of Granite Fracture Network on Silica-Enriched Groundwater Formation and Geothermometers in Low-Temperature Hydrothermal System. Journal of Hydrology, 2022, 609: 127720

[47]

Mengelle-LópezJ J, CanetC, Prol-LedesmaR M, et al. . Secuencia Vulcano-Sedimentaria La Esperanza (Cretácico Inferior) al Norte de Guanajuato, México: Importancia en la Exploración de Sulfuros Masivos Vulcanogénicos Secuencia Vulcano-Sedimentaria La Esperanza (Cretácico Inferior) al Norte de Guanajuato, México: Importancia en la exploración de Sulfuros Masivos Vulcanogénicos. Boletín de la Sociedad Geológica Mexicana, 2013, 65(3): 511-525

[48]

Morales-ArredondoI, RodríguezR, ArmientaM A, et al. . The Origin of Groundwater Arsenic and Fluorine in a Volcanic Sedimentary Basin in Central Mexico: A Hydrochemistry Hypothesis. Hydrogeology Journal, 2016, 24: 1029-1044

[49]

Morales-ArredondoJ I, Armienta HernándezM A, Hernández-MendiolaE, et al. . Hydrochemical Behavior of Uranium and Thorium in Rock and Groundwater Samples from Southeastern of El Bajío Guanajuatense, Guanajuato, Mexico. Environmental Earth Sciences, 2018, 77: 567

[50]

Morales-ArredondoJ I, Esteller-AlberichM V, Armienta HernándezM A, et al. . Characterizing the Hydrogeochemistry of Two Low-Temperature Thermal Systems in Central Mexico. Journal of Geochemical Exploration, 2018, 185: 93-104

[51]

Morales-ArredondoJ I, Armienta HernándezM A, Ortega-GutiérrezJ E, et al. . Evaluation of the Carbon Dioxide Behavior in a Thermal Aquifer Located at Central Mexico and Its Relation to Silicate Weathering. International Journal of Environmental Science and Technology, 2020, 17(7): 3411-3430

[52]

Morales-ArredondoI, Flores-OcampoI Z, ArmientaM A, et al. . Identificación de Las Fuentes de Nitratos Mediante Métodos Hidrogeoquímicos E Isotópicos En El Agua Subterránea Del Bajío Guanajuatense. Geofísica Internacional, 2020, 59(3): 169-194

[53]

Morales-ArredondoJ I, HernandezM A A, Juárez-AparicioF, et al. . Use of δ18O, δ13C and B to Identify Hydrogeochemical Processes Related to Contamination in an Aquifer Located in Central Mexico. Acta Geochimica, 2022, 41: 367-392

[54]

Morales-ArredondoJ I, HernándezM A A, Lugo-DorantesA E, et al. . Fluoride Presence in Drinking Water along the Southeastern Part of El Bajio Guanajuatense, Guanajuato, Mexico: Sources and Health Effects. Environmental Geochemistry and Health, 2023, 45: 3715-3742

[55]

Morales-SimforsN, BundschuhJ. Arsenic-Rich Geothermal Fluids as Environmentally Hazardous Materials—A Global Assessment. Science of the Total Environment, 2022, 817: 152669

[56]

Moran-RamírezJ, Morales-ArredondoJ I, Armienta-HernándezM A, et al. . Quantification of the Mixture of Hydrothermal and Fresh Water in Tectonic Valleys. Journal of Earth Science, 2020, 31(5): 1007-1015

[57]

NicolliH B, BundschuhJ, BlancoM D C, et al. . Arsenic and Associated Trace-Elements in Groundwater from the Chaco-Pampean Plain, Argentina: Results from 100 Years of Research. Science of the Total Environment, 2012, 429: 36-56

[58]

Nieto-SamaniegoA F, Ojeda-GarcíaA C, Alaniz-ÁlvarezS A, et al. . Geología de la Región de Salamanca, Guanajuato, México. Boletín de la Sociedad Geológica Mexicana, 2012, 64(3): 411-425

[59]

NOM-127-SSA1-1994-2000. Norma Oficial Mexicana ‘Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el aguapara su potabilización’, 2000

[60]

NOM-230-SSA1-2002. Norma Oficial Mexicana, Salud ambiental. Agua para uso y consumo humano, requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo in, 2002

[61]

Pérez-VenzorJ A, Aranda-GómezJ J, McDowellF, et al. . Geology of the Palo Huérfano Volcano, Guanajuato, Mexico. National Autonomous University of Mexico, Institute of Geology, 1996, 13(2): 174-183

[62]

PiK F, MarkelovaE, ZhangP, et al. . Arsenic Oxidation by Flavin-Derived Reactive Species under Oxic and Anoxic Conditions: Oxidant Formation and pH Dependence. Environmental Science & Technology, 2019, 53(18): 10897-10905

[63]

QuicksallA N, BostickB C, SampsonM L. Linking Organic Matter Deposition and Iron Mineral Transformations to Groundwater Arsenic Levels in the Mekong Delta, Cambodia. Applied Geochemistry, 2008, 23(11): 3088-3098

[64]

RendónC F. Reconocimiento de Algunos Yacimientos de Minerales Poco Conocidos en el Municipio de Comonfort, Estado de Guanajuato, Archivo Técnico, 1958 1-42

[65]

SavoieC B Y. Arsenic Mobility and Compositional Variability in High-Silica Ash Flow Tuffs, 2013 Portland State University, Portland Department of Geology

[66]

SmedleyP L, KinniburghD G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 2002, 17(5): 517-568

[67]

H U, PostmaD, JakobsenR, et al. . Sorption and Desorption of Arsenate and Arsenite on Calcite. Geochimica et Cosmochimica Acta, 2008, 72(24): 5871-5884

[68]

SosaA, ArmientaM A, AguayoA, et al. . Evaluation of the Influence of Main Groundwater Ions on Arsenic Removal by Limestones through Column Experiments. Science of the Total Environment, 2020, 727: 138459

[69]

StewartC, DambyD E, TomašekI, et al. . Assessment of Leachable Elements in Volcanic Ashfall: A Review and Evaluation of a Standardized Protocol for Ash Hazard Characterization. Journal of Volcanology and Geothermal Research, 2020, 392: 106756

[70]

StollenwerkK G. WelchA H, StollenwerkK G. Geochemical Processes Controlling Transport of Arsenic in Groundwater: A Review of Adsorption. Arsenic in Ground Water: Geochemistry and Occurence, 2003 Norwell, MA, Boston Kluwer Academic Publishers

[71]

StolzeL, ZhangD, GuoH M, et al. . Model-Based Interpretation of Groundwater Arsenic Mobility during in situ Reductive Transformation of Ferrihydrite. Environmental Science & Technology, 2019, 53(12): 6845-6854

[72]

StreckeisenA L. Classification and Nomenclature of Igneous Rocks. Neues Jahrbuch für Mineralogie, 1967, 107: 2

[73]

TóthJ. Gravitational Systems of Groundwater Flow: Theory, Evaluation, Utilization, 2009 New York Cambridge University Press 297

[74]

United States Environmental Protection Agency (USEPA). Summary of Method. En method 6200 “Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment”, 2007 3

[75]

van GeenA, ZhengY, ChengZ, et al. . A Transect of Groundwater and Sediment Properties in Araihazar, Bangladesh: Further Evidence of Decoupling between as and Fe Mobilization. Chemical Geology, 2006, 228(1/2/3): 85-96

[76]

VermaM P, IzquierdoG, UrbinoG A, et al. . Inter-Laboratory Comparison of SiO2 Analysis for Geothermal Water Chemistry. Geothermics, 2012, 44: 33-42

[77]

VermaM P, PortugalE, GangloffS, et al. . Determination of the Concentration of Carbonic Species in Natural Waters: Results from a World-Wide Proficiency Test. Geostandards and Geoanalytical Research, 2015, 39(2): 233-255

[78]

ViswanathanH, DaiZ X, LopanoC, et al. . Developing a Robust Geochemical and Reactive Transport Model to Evaluate Possible Sources of Arsenic at the CO2 Sequestration Natural Analog Site in Chimayo, New Mexico. International Journal of Greenhouse Gas Control, 2012, 10: 199-214

[79]

WatanabeY, AmitaniN, YokoyamaT, et al. . Synthesis of Mesoporous Silica from Geothermal Water. Scientific Reports, 2021, 11: 23811

[80]

WebbC J, DavisA D. StatesJ C. Remediation of Arsenic in Drinking Water (Chapter 3). Arsenic: Exposure Sources, Health Risks, and Mechanisms of Toxicity, 2016 Hoboken Wiley 61-80

[81]

WuX H, BurnellS, NeilC W, et al. . Effects of Phosphate, Silicate, and Bicarbonate on Arsenopyrite Dissolution and Secondary Mineral Precipitation. ACS Earth and Space Chemistry, 2020, 4(4): 515-525

[82]

XiaoT, DaiZ X, ViswanathanH, et al. . Arsenic Mobilization in Shallow Aquifers Due to CO2 and Brine Intrusion from Storage Reservoirs. Scientific Reports, 2017, 7: 2763

[83]

XieX J, WangY X, EllisA, et al. . Delineation of Groundwater Flow Paths Using Hydrochemical and Strontium Isotope Composition: a Case Study in High Arsenic Aquifer Systems of the Datong Basin, Northern China. Journal of Hydrology, 2013, 476: 87-96

[84]

ZhangJ W, MaT, FengL, et al. . Arsenic Behavior in Different Biogeochemical Zonations Approximately along the Groundwater Flow Path in Datong Basin, Northern China. Science of the Total Environment, 2017, 584/585: 458-468

[85]

ZhengL G, AppsJ A, SpycherN, et al. . Geochemical Modeling of Changes in Shallow Groundwater Chemistry Observed during the MSU-ZERT CO2 Injection Experiment. International Journal of Greenhouse Gas Control, 2012, 7: 202-217

[86]

ZhengL G, NicoP, SpycherN, et al. . Potential Impacts of CO2 Leakage on Groundwater Quality of Overlying Aquifer at Geological Carbon Sequestration Sites: A Review and a Proposed Assessment Procedure. Greenhouse Gases: Science and Technology, 2021, 11(5): 1134-1166

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

234

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/