Formation of a DMM-EM2 Mixing Trend in Continental Intraplate Basalts by Variable Degrees of Melting of Hybrid Mantle Controlled by the Lithospheric Lid
Xun Yu , Gang Zeng , Xiao-Jun Wang , Fa-Jun Sun , Hui-Li Zhang
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (5) : 2179 -2192.
Formation of a DMM-EM2 Mixing Trend in Continental Intraplate Basalts by Variable Degrees of Melting of Hybrid Mantle Controlled by the Lithospheric Lid
Continental intraplate basalts form by partial melting of the mantle, and can provide important constraints on mantle heterogeneity. However, due to the thick overlying continental lithosphere, the origins of the geochemical characteristics of continental intraplate basalts are controversial. In this study, we examined the geochemistry of Cenozoic basalts in southeast China. These basalts which are divided into four volcanic belts exhibit a DMM-EM2 mixing trend and spatial variations in Pb isotopes from inland (i.e., thick lithosphere) to coastal (i.e., thin lithosphere) regions. In contrast to the Pb isotopic variations, there are no spatial variations in Sr-Nd-Hf isotopes. Marked correlations between Pb isotopes and major elements (i.e., MgO and SiO2) suggest the continental lithospheric lid controlled their petrogenesis. Nonetheless, other factors are needed to explain the variations in Ti/Ti* and Hf/Hf* ratios, and Nd-Hf isotopes of the southeast China basalts. The increasing Pb isotope ratios from the inner to coastal regions are associated with decreases in CaO/Al2O3 ratios and increases in FC3MS (FeOT/CaO–3 × MgO/SiO2; in wt.%) values, indicating contributions from non-peridotite components in the mantle sources. The similarly depleted Nd-Hf isotopic compositions of the basalts from the three inner belts indicate these basalts have a similar origin, whereas the more enriched isotopic features of the basalts from the outer belt suggest their mantle source contains older recycled oceanic crust. Thus, source (i. e., lithological) heterogeneity also had a significant role in controlling the geochemistry of these basalts. The DMM-EM2 mixing trend defined by the Pb isotopic compositions of continental intraplate basalts from southeast China was generated by variable degrees of melting of heterogeneous mantle that was controlled by the thickness of the continental lithospheric lid (i.e., the melting pressure). This caused variable extents of melting of enriched components in the mantle sources of the basalts (i.e., carbonated peridotite vs. pyroxenite).
continental intraplate basalt / enriched mantle 2 (EM2) / Pb isotopes / carbonated mantle / melting behavior / geochemistry / petrology
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature
/
| 〈 |
|
〉 |