Preface for “Tropical Large Benthic Foraminifera: Adaption, Extinction, and Radiation”

Claire E. Reymond , Pamela Hallock , Hildegard Westphal

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (6) : 1339 -1347.

PDF
Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (6) : 1339 -1347. DOI: 10.1007/s12583-021-1590-0
Preface

Preface for “Tropical Large Benthic Foraminifera: Adaption, Extinction, and Radiation”

Author information +
History +
PDF

Cite this article

Download citation ▾
Claire E. Reymond, Pamela Hallock, Hildegard Westphal. Preface for “Tropical Large Benthic Foraminifera: Adaption, Extinction, and Radiation”. Journal of Earth Science, 2022, 33(6): 1339-1347 DOI:10.1007/s12583-021-1590-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alegret L, Thomas E. Benthic Foraminifera and Environmental Turnover across the Cretaceous/Paleogene Boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(1/2): 59-83.

[2]

Beavington-Penney S J, Racey A. Ecology of Extant Nummulitids and other Larger Benthic Foraminifera: Applications in Palaeoenvironmental Analysis. Earth-Science Reviews, 2004, 67(3/4): 219-265.

[3]

Bentov S, Brownlee C, Erez J. The Role of Seawater Endocytosis in the Biomineralization Process in Calcareous Foraminifera. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21500-21504.

[4]

Berner R A, Kothavala Z. GEOCARB III: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 2001, 301(2): 182-204.

[5]

Bischoff W D, Bishop F C, MacKenzie F. Biogenically Produced Magnesian Calcite; Inhomogeneities in Chemical and Physical Properties; Comparison with Synthetic Phases. American Mineralogist, 1983, 68(11/12): 1183-1188

[6]

Botté E S, Luter H M, Marangon E, . Simulated Future Conditions of Ocean Warming and Acidification Disrupt the Microbiome of the Calcifying Foraminifera Marginopora vertebralis across Life Stages. Environmental Microbiology Reports, 2020, 12(6): 693-701.

[7]

BouDagher-Fadel M K. Evolution and Geological Significance of Larger Benthic Foraminifera. Developments in Palaeontology and Stratigraphy, 2008, 21: 540

[8]

BouDagher-Fadel M K. Evolution and Geological Significance of Larger Benthic Foraminifera, 2018, London: UCL Press, 702

[9]

BouDagher-Fadel M K. Evolution, Extinction and Homoplasy of the Larger Benthic Foraminifera from the Carboniferous to the Present Day, as Exemplified by Planispiral-fusiform and Discoidal Forms. Journal of Earth Science, 2022, 33(6): 1348-1361

[10]

BouDagher-Fadel M K, Price G D. The Phylogenetic and Palaeogeographic Evolution of the Miogypsinid Larger Benthic Foraminifera. Journal of the Geological Society, 2013, 170(1): 185-208.

[11]

BouDagher-Fadel M, Price G D. Global Evolution and Paleogeographic Distribution of Mid-Cretaceous Orbitolinids. UCL Open Environment, 2019, 1 21

[12]

Bradshaw J S. Laboratory Studies on the Rate of Growth of the Foraminifer. Journal of Paleontology, 1957, 31(6): 1138-1147

[13]

Brandano M, Tomassetti L, Bosellini F, . Depositional Model and Paleodepth Reconstruction of a Coral-Rich, Mixed Siliciclastic-Carbonate System: The Burdigalian of Capo Testa (Northern Sardinia, Italy). Facies, 2010, 56(3): 433-444.

[14]

Brasier M D. Leadbeater B S C, Riding R. Form, Function and Evolution in Benthic and Planktic Foraminiferid Test Architecture. Biomineralisation in Lower Plants and Animals, 1986, Oxford: Clarendon Press, 32-67.

[15]

Briguglio A, Hohenegger J. Growth Oscillation in Larger Foraminifera. Paleobiology, 2014, 40(3): 494-509.

[16]

Briguglio A, Wöger J, Wolfgring E, . Changing Investigation Perspectives: Methods and Applications of Computed Tomography on Larger Benthic Foraminifera. Approaches to Study Living Foraminifera, 2014, Tokyo: Springer, 55-70

[17]

Cole W, . Johnson J H, Bramlette M, Riedel W, . Larger Foraminifera. Geology of Saipan, Mariana Islands: Part 3, Paleontology, 1957 321-360

[18]

Cotton L J, Pearson P N, Renema W. Stable Isotope Stratigraphy and Larger Benthic Foraminiferal Extinctions in the Melinau Limestone, Sarawak. Journal of Asian Earth Sciences, 2014, 79: 65-71.

[19]

Culver S J. Benthic Foraminifera across the Cretaceous-Tertiary (KT) Boundary: A Review. Marine Micropaleontology, 2003, 47(3/4): 177-226.

[20]

Cushman J A. Foraminifera: Their Classification and Economic Use, 1940, Harvard: Harvard University Press, 605

[21]

Darling K F, Schweizer M, Knudsen K L, . The Genetic Diversity, Phylogeography and Morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Marine Micropaleontology, 2016, 129: 1-23.

[22]

Darling K F, Thomas E, Kasemann S A, . Surviving Mass Extinction by Bridging the Benthic/Planktic Divide. PNAS, 2009, 106(31): 12629-12633.

[23]

de Nooijer L J, Spero H J, Erez J, . Biomineralization in Perforate Foraminifera. Earth-Science Reviews, 2014, 135: 48-58.

[24]

de Vargas C, Norris R, Zaninetti L, . Molecular Evidence of Cryptic Speciation in Planktonic Foraminifers and Their Relation to Oceanic Provinces. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(6): 2864-2868.

[25]

Doo S S, Leplastrier A, Graba-Landry A, . Amelioration of Ocean Acidification and Warming Effects through Physiological Buffering of a Macroalgae. Ecology and Evolution, 2020, 10(15): 8465-8475.

[26]

Drooger C W. Radial Foraminifera, Morphometrics and Evolution. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde, Erste Reeks, 1993 241

[27]

Dubicka Z, Gajewska M, Kozłowski W, . Photosynthetic Activity in Devonian Foraminifera. Biogeosciences, 2021, 18(20): 5719-5728.

[28]

Dubinsky Z, Berman-Frank I. Uncoupling Primary Production from Population Growth in Photosynthesizing Organisms in Aquatic Ecosystems. Aquatic Sciences, 2001, 63(1): 4-17.

[29]

Engel B E, Hallock P, Price R E, . Shell Dissolution in Larger Benthic Foraminifers Exposed to pH and Temperature Extremes: Results from an in situ Experiment. The Journal of Foraminiferal Research, 2015, 45(2): 190-203.

[30]

Erez J. The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 115-149.

[31]

Evans D, Müller W, Erez J. Assessing Foraminifera Biomineralisation Models through Trace Element Data of Cultures under Variable Seawater Chemistry. Geochimica et Cosmochimica Acta, 2018, 236: 198-217.

[32]

Fehrenbacher J S, Russell A D, Davis C V, . Link between Light-Triggered Mg-Banding and Chamber Formation in the Planktic Foraminifera Neogloboquadrina dutertrei. Nature Communications, 2017, 8: 15441

[33]

Förderer M, Rödder D, Langer M R. Patterns of Species Richness and the Center of Diversity in Modern Indo-Pacific Larger Foraminifera. Scientific Reports, 2018, 8 8189

[34]

Fujita K, Kanda Y, Hosono T. Light is an Important Limiting Factor for the Vertical Distribution of the Largest Extant Benthic Foraminifer Cycloclypeus carpenteri. Journal of Earth Science, 2022, 33(6): 1460-1468

[35]

Fursenko A V. Cushman J A. General Information about Foraminifera and Their Significance for Petroleum Geology. Foraminifery: Leningrad-Moscow, Noovosibirsk, Gosudarstvennoe Nauchnotechnicheskoe Gornogeologoneftjanoe Izdatelstvo, 1933 5-77.

[36]

Garcia-Cuetos L, Pochon X, Pawlowski J. Molecular Evidence for Host-Symbiont Specificity in Soritid Foraminifera. Protist, 2005, 156(4): 399-412.

[37]

Glas M S, Fabricius K E, de Beer D, . The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World. PLoS ONE, 2012, 7(11): e50010

[38]

Goeting S, Briguglio A, Eder W, . Depth Distribution of Modern Larger Benthic Foraminifera Offshore Brunei Darussalam. Micropaleontology, 2018, 64 4 299-316.

[39]

Groussin M, Gouy M. Adaptation to Environmental Temperature is a Major Determinant of Molecular Evolutionary Rates in Archaea. Molecular Biology and Evolution, 2011, 28(9): 2661-2674.

[40]

Groves J R, Yue W. Foraminiferal Diversification during the Late Paleozoic IceAge. Paleobiology, 2009, 35(3): 367-392.

[41]

Gudmundsson G. Phylogeny, Ontogeny and Systematics of Recent Soritacea Ehrenberg 1839 (Foraminiferida). Micropaleontology, 1994, 40(2): 101-155.

[42]

Guido A, Papazzoni C A, Mastandrea A, . Automicrite in a ‘Nummulite Bank’ from the Monte Saraceno (Southern Italy): Evidence for Synsedimentary Cementation. Sedimentology, 2011, 58(4): 878-889.

[43]

Hallock P. Production of Carbonate Sediments by Selected Large Benthic Foraminifera on Two Pacific Coral Reefs. Journal of Sedimentary Petrology, 1981, 51(2): 467-474

[44]

Hallock P. Why are Larger Foraminifera Large?. Paleobiology, 1985, 11(2): 195-208.

[45]

Hallock P. Symbiont-Bearing Foraminifera: Harbingers of Global Change. Micropaleontology, 2000, 46: 95-104.

[46]

Hallock P. Stanley G D. Coral Reefs, Carbonate Sediments, Nutrients, and Global Change. The History and Sedimentology of Ancient Reef Systems, 2001, Boston: Springer, 387-427.

[47]

Hallock P, Glenn E C. Larger Foraminifera: A Tool for Paleoenvironmental Analysis of Cenozoic Carbonate Depositional Facies. PALAIOS, 1986, 1(1): 55-64.

[48]

Hallock P, Schlager W. Nutrient Excess and the Demise of Coral Reefs and Carbonate Platforms. PALAIOS, 1986, 1(4): 389-398.

[49]

Hallock P, Reymond C E. Contributions of Trimorphic Life Cycles to Dispersal and Evolutionary Trends in Large Benthic Foraminifera. Journal of Earth Science, 2022, 33(6): 1425-1433

[50]

Hallock P, Lidz B H, Cockey-Burkhard E M, . Foraminifera as Bioindicators in Coral Reef Assessment and Monitoring: The FORAM Index. Foraminifera in Reef Assessment and Monitoring. Environmental Monitoring and Assessment, 2003, 81(1/2/3): 221-238.

[51]

Hansen H J, Buchardt B. Depth Distribution of Amphistegina in the Gulf of Elat, Israel. Utrecht Micropaleontological Bulletin, 1977, 15: 205-224.

[52]

Hansen H J, Dalberg P. Symbiotic Algae in Milioline Foraminifera: CO2 Uptake and Shell Adaptations. Bulletin of the Geological Society of Denmark, 1979, 28: 47-55.

[53]

Hedley R H. Felts W J L, Harrison R J. The Biology of Foraminifera. International Review of General and Experimental Zoology, 1964 1-45

[54]

Hemleben C, Kaminski M A. Hemleben C, Kaminski M A, Kuhnt W, Scott D B. Agglutinated Foraminifera: An Introduction. Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera, 1990, Dordrecht: Springer, 3-11.

[55]

Hohenegger J. Distribution of Living Larger Foraminifera NW of Sesoko-Jima, Okinawa, Japan. Marine Ecology, 1994, 15(3/4): 291-334.

[56]

Hohenegger J. Coenoclines of Larger Foraminifera. Micropaleontology, 2000, 46: 127-151.

[57]

Hohenegger J, Torres-Silva A I, Eder W. Interpreting Morphologically Homogeneous (Paleo- )Populations as Ecological Species Enables Comparison of Living and Fossil Organism Groups, Exemplified by Nummulitid Foraminifera. Journal of Earth Science, 2022, 33(6): 1362-1377

[58]

Hohn S, Reymond C E. Coral Calcification, Mucus, and the Origin of Skeletal Organic Molecules. Coral Reefs, 2019, 38(5): 973-984.

[59]

Holzmann M, Hohenegger J, Hallock P, . Phylogeny of Large Miliolid Foraminifera (Soritacea Ehrenberg 1839). Marine Micropaleontology, 2001, 43(1/2): 57-74.

[60]

Holzmann M, Hohenegger J, Apothéloz-Perret-Gentil L, . A Revision of Recent Nummulitid Genera Based on Molecular and Morphological Data. Journal of Earth Science, 2022, 33(6): 1411-1424

[61]

Holzmann M, Pawlowski J. An Updated Classification of Rotaliid Foraminifera Based on Ribosomal DNA Phylogeny. Marine Micropaleontology, 2017, 132: 18-34.

[62]

Hönisch B, Ridgwell A, Schmidt D N, . The Geological Record of Ocean Acidification. Science, 2012, 335(6072): 1058-1063.

[63]

Hottinger L. Uber Paleocaene Und Eocaene Alveolinen. Eclogae Geologicae Helvetiae, 1960, 53(1): 265-283

[64]

Huber B T, Bijma J, Darling K. Cryptic Speciation in the Living Planktonic Foraminifer Globigerinella siphonifera (d’Orbigny). Paleobiology, 1997, 23(1): 33-62.

[65]

Humphreys A F, Halfar J, Ingle J C, . Shallow-Water Benthic Foraminifera of the Galápagos Archipelago: Ecologically Sensitive Carbonate Producers in an Atypical Tropical Oceanographic Setting. Journal of Foraminiferal Research, 2019, 49(1): 48-65

[66]

Humphreys A F, Purkis S J, Wan C, . A New Foraminiferal Bioindicator for Long-Term Heat Stress on Coral Reefs. Journal of Earth Science, 2022, 33(6): 1451-1459

[67]

Keitelman V. A Brief Review of the Study of Symbiotic Relationships in Extant and Fossil Foraminifera. Ameghiniana, 2020, 57(4): 327-335.

[68]

Kövecsi S -A, Less G, Pleş G, . Nummulites Assemblages, Biofabrics and Sedimentary Structures: The Anatomy and Depositional Model of an Extended Eocene (Bartonian) Nummulitic Accumulation from the Transylvanian Basin (NW Romania). Palaeogeography, Palaeoclimatology,Palaeoecology, 2022, 586: 110751

[69]

Langer M R. Assessing the Contribution of Foraminiferan Protists to Global Ocean Carbonate Production. Journal of Eukaryotic Microbiology, 2008, 55(3): 163-169.

[70]

Langer M, Hottinger L. Biogeography of Selected “Larger” Foraminifera. Micropaleontology, 46 (Suppl. 1): 105–126 of Reef Foraminifera. Journal of Foraminiferal Research, 2000, 27(4): 271-277.

[71]

Lee J J. Living Sands: Larger Foraminifera and Their Endosymbiotic Algae. Symbiosis, 1998, 25(1/2/3): 71-100

[72]

Lee J J. Algal Symbiosis in Larger Foraminifera. Symbiosis, 2006, 42(2): 63-75

[73]

Lee J J, Hallock P. Algal Symbiosis as the Driving Force in the Evolution of Larger Foraminifera. Annals of the New York Academy of Sciences, 1987, 503(1): 330-347.

[74]

Lee J J, McEnery M E, Kahn E G, . Symbiosis and the Evolution of Larger Foraminifera. Micropaleontology, 1979, 25(2): 118-140.

[75]

Lee J J, Muller W A, Stone R J, . Standing Crop of Foraminifera in Sublittoral Epiphytic Communities of a Long Island Salt Marsh. Marine Biology, 1969, 4(1): 44-61.

[76]

Leutert T J, Sexton P F, Tripati A, . Sensitivity of Clumped Isotope Temperatures in Fossil Benthic and Planktic Foraminifera to Diagenetic Alteration. Geochimica et Cosmochimica Acta, 2019, 257 354-372.

[77]

Loeblich A R, Tappan H. Foraminiferal Genera and Their Classification, 1987, New York: Van Nostrand Reinhold, 970

[78]

Lunt P, Luan X W. East Tethyan Cenozoic Larger Foraminifera: Taxonomic Questions, Apparent Radiation and Abrupt Extinctions. Journal of Earth Science, 2022, 33(6): 1378-1399

[79]

Mateu-Vicens G, Hallock P, Brandano M. Test-Shape Variability of Amphistegina d’Orbigny, 1826 as a Paleobathymetric Proxy: Application to Two Miocene Examples. Geologic Problem Solving with Microfossils. SEPM Special Publications, 2009, 93: 67-82.

[80]

Michel J, Vicens G M, Westphal H. Modern Heterozoan Carbonates from a Eutrophic Tropical Shelf (Mauritania). Journal of Sedimentary Research, 2011, 81(9/10): 641-655.

[81]

Mikhalevich V I. Post-Cambrian Testate Foraminifera as a System in Its Evolution, 2013, New York: Nova Science Publishers, 426

[82]

Momigliano P, Uthicke S. Symbiosis in a Giant Protist (Marginopora vertebralis, Soritinae): Flexibility in Symbiotic Partnerships along a Natural Temperature Gradient. Marine Ecology Progress Series, 2013, 491: 33-46.

[83]

Morse F T, Mackenzie J W. Geochemistry of Sedimentary Carbonates, 1990 706

[84]

Morse J W, Andersson A J, Mackenzie F T. Initial Responses of Carbonate-Rich Shelf Sediments to Rising Atmospheric pCO2 and “Ocean Acidification”: Role of High Mg-Calcites. Geochimica et Cosmochimica Acta, 2006, 70(23): 5814-5830.

[85]

Narayan G R, Reymond C E, Stuhr M, . Response of Large Benthic Foraminifera to Climate and Local Changes: Implications for Future Carbonate Production. Sedimentology, 2022, 69(1): 121-161.

[86]

Narayan G R, Herrán N, Reymond C E, . Local Persistence of Foraminifera under Increasing Urban Development: A Case Study from Zanzibar (Unguja), East Africa. Journal of Earth Science, 2022, 33(6): 1434-1450

[87]

Narayan Y R, Lybolt M, Zhao J -X, . Holocene Benthic Foraminiferal Assemblages Indicate Long-Term Marginality of Reef Habitats from Moreton Bay, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420: 49-64.

[88]

Narayan Y R, Pandolfi J M. Benthic Foraminiferal Assemblages from Moreton Bay, South-East Queensland, Australia: Applications in Monitoring Water and Substrate Quality in Subtropical Estuarine Environments. Marine Pollution Bulletin, 2010, 60(11): 2062-2078.

[89]

Pandolfi J M, Jackson J B C, Baron N, . Are US Coral Reefs on the Slippery Slope to Slime?. Science, 2005, 307(5716): 1725-1726.

[90]

Papazzoni C A, Ćosović V, Briguglio A, . Towards a Calibrated Larger Foraminifera Biostratigraphic Zonation: Celebrating 18 Years of the Application of Shallow Benthic Zones. PALAIOS, 2017, 32(1): 1-4.

[91]

Papazzoni C A, Seddighi M. What, if Anything, is a Nummulite Bank?. Journal of Foraminiferal Research, 2018, 48(4): 276-287.

[92]

Patterson R T, Fowler A D. Evidence of Self Organization in Planktic Foraminiferal Evolution: Implications for Interconnectedness of Paleoecosystems. Geology, 1996, 24(3): 215-218.

[93]

Pawlowski J, Bolivar I, Fahrni J F, . Extreme Differences in Rates of Molecular Evolution of Foraminifera Revealed by Comparison of Ribosomal DNA Sequences and the Fossil Record. Molecular Biology and Evolution, 1997, 14(5): 498-505.

[94]

Pawlowski J, Holzmann M, Berney C, . The Evolution of Early Foraminifera. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20): 11494-11498.

[95]

Pawlowski J, Holzmann M, Tyszka J. New Supraordinal Classification of Foraminifera: Molecules Meet Morphology. Marine Micropaleontology, 2013, 100: 1-10.

[96]

Pochon X, Garcia-Cuetos L, Baker A C, . One-Year Survey of a Single Micronesian Reef Reveals Extraordinarily Rich Diversity of Symbiodinium Types in Soritid Foraminifera. Coral Reefs, 2007, 26(4): 867-882.

[97]

Prazeres M, Renema W. Evolutionary Significance of the Microbial Assemblages of Large Benthic Foraminifera. Biological Reviews, 2019, 94(3): 828-848.

[98]

Prazeres M, Martínez-Colón M, Hallock P. Foraminifera as Bioindicators of Water Quality: The FoRAM Index Revisited. Environmental Pollution, 2020, 257: 113612

[99]

Raja R, Saraswati P K, Rogers K, . Magnesium and Strontium Compositions of Recent Symbiont-Bearing Benthic Foraminifera. Marine Micropaleontology, 2005, 58(1): 31-44.

[100]

Raja R, Saraswati P K, Iwao K. A Field-Based Study on Variation in Mg/Ca and Sr/Ca in Larger Benthic Foraminifera. Geochemistry, Geophysics, Geosystems, 2007, 8(10): Q10012

[101]

Raup D M, Sepkoski J J Jr.. Mass Extinctions in the Marine Fossil Record. Science, 1982, 215 4539 1501-1503.

[102]

Reijmer J. Marine Carbonate Factories: Review and Update. Sedimentology, 2021, 68 1729-1796.

[103]

Renema W. Morphological Diversity in the Foraminiferal Genus Marginopora. PLoS One, 2018, 13(12): e0208158

[104]

Reymond C E, Patel F, Uthicke S. Stable Adult Growth but Reduced Asexual Fecundity in Marginopora vertebralis under Global Climate Change Scenarios. Journal of Earth Science, 2022, 33 6 1400-1410

[105]

Reymond C E, Hohn S. An Experimental Approach to Assessing the Roles of Magnesium, Calcium, and Carbonate Ratios in Marine Carbonates. Oceans, 2021, 2(1): 193-214.

[106]

Reymond C E, Lloyd A, Kline D I, . Decline in Growth of Foraminifer Marginopora rossi under Eutrophication and Ocean Acidification Scenarios. Global Change Biology, 2013, 19(1): 291-302.

[107]

Reymond C E, Mateu-Vicens G, Westphal H. Foraminiferal Assemblages from a Transitional Tropical Upwelling Zone in the Golfe d’Arguin, Mauritania. Estuarine, Coastal and Shelf Science, 2014, 148: 70-84.

[108]

Reymond C E, Uthicke S, Pandolfi J M. Yellowlees D, Hughes T P. Tropical Foraminifera as Indicators of Water Quality and Temperature. 12th International Coral Reef Symposium, 2012, Cairns, Australia: James Cook University, 1-5

[109]

Reymond C E, Uthicke S, Pandolfi J M. Inhibited Growth in the Photosymbiont-Bearing Foraminifer Marginopora Vertebralis from the Nearshore Great Barrier Reef, Australia. Marine Ecology Progress Series, 2011, 435: 97-109.

[110]

Reymond C E, Zihrul K-S, Halfar J, . Heterozoan carbonates from the equatorial rocky reefs of the Galápagos Archipelago. Sedimentology, 2016, 63: 940-958.

[111]

Ries J B. Review: Geological and Experimental Evidence for Secular Variation in Seawater Mg/Ca (Calcite-Aragonite Seas) and Its Effects on Marine Biological Calcification. Biogeosciences, 2010, 7(9): 2795-2849.

[112]

Ross C A. Fusulinids from the Hess Member of the Leonard Formation, Leonard Series (Permian), Glass Mountains, Texas. Contributions from the Cushman Foundation for Foraminiferal Research, 1960, XI(4): 117-133

[113]

Ross C A. Evolutionary and Ecological Significance of Large Calcareous Foraminiferida (Protozoa), Great Barrier Reef. Proceedings of the Second International Coral Reef Symposium, 1974, 1: 327-333.

[114]

Schaub H. Nummulites et Assilines de la Téthys Paléogène. Taxinomie, Phylogenèse et Biostratigraphie. Mémoires Suisses de Paléontologie, 1981, 104: 236

[115]

Scheibner C, Speijer R P, Marzouk A M. Turnover of Larger Foraminifera during the Paleocene-Eocene Thermal Maximum and Paleoclimatic Control on the Evolution of Platform Ecosystems. Geology, 2005, 33(6): 493-496.

[116]

Segev E, Erez J. Effect of Mg/Ca Ratio in Seawater on Shell Composition in Shallow Benthic Foraminifera. Geochemistry, Geophysics, Geosystems, 2006, 7(2): Q02P09

[117]

Sen Gupta B K. Systematics of Modern Foraminifera. Modern Foraminifera, 2002, Dordrecht: Springer, 371

[118]

Sepkoski J J. A Compendium of Fossil Marine Animal Genera. Bulletins of American Paleontology, 2002, 1 83 1-156

[119]

Serra-Kiel J, Hottinger L, Caus E, . Larger Foraminiferal Biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Societe Geologique de France, 1998, 169(2): 281-299

[120]

Serra-Kiel J, Vicedo V, Baceta J I, . Paleocene Larger Foraminifera from the Pyrenean Basin with a Recalibration of the Paleocene Shallow Benthic Zones. Geologica Acta, 2020, 18 1-69.

[121]

Stuhr M, Cameron L P, Blank-Landeshammer B, . Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans, 2021, 2(2): 281-314.

[122]

Stuhr M, Meyer A, Reymond C E, . Variable Thermal Stress Tolerance of the Reef-Associated Symbiont-Bearing Foraminifera Amphistegina Linked to Differences in Symbiont Type. Coral Reefs, 2018, 37(3): 811-824.

[123]

Talge H K, Hallock P. Ultrastructural Responses in Field-Bleached and Experimentally Stressed Amphistegina gibbosa (Class Foraminifera). Journal of Eukaryotic Microbiology, 2003, 50(5): 324-333.

[124]

Tappan H, Loeblich A R. Foraminiferal Evolution, Diversification, and Extinction. Journal of Paleontology, 1988, 62: 695-714.

[125]

ter Kuile B, Erez J, Padan E. Mechanisms for the Uptake of Inorganic Carbon by Two Species of Symbiont-Bearing Foraminifera. Marine Biology, 1989, 103(2): 241-251.

[126]

Todd R. Smaller Foraminifera from Guam, 1966 40

[127]

Vachard D. Macroevolution and Biostratigraphy of Paleozoic Foraminifers. Stratigraphy & Timescales, 2016, 1: 257-323.

[128]

Vachard D, Pille L, Gaillot J. Palaeozoic Foraminifera: Systematics, Palaeoecology and Responses to Global Changes. Revue de Micropaléontologie, 2010, 53(4): 209-254.

[129]

von Möller V. Über Fusulinen und ähnliche Foraminiferen-Formen des russischen Kohlenkalkes. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 1877 139-146

[130]

Walter L M, Morse J W. Reactive Surface Area of Skeletal Carbonates during Dissolution: Effect of Grain Size. SEPM Journal of Sedimentary Research, 1984, 54: 1081-1090.

[131]

Wendler J, Willems H. Koeberl C, MacLeod K G. Distribution Pattern of Calcareous Dinoflagellate Cysts across the Cretaceous-Tertiary Boundary (Fish Clay, Stevns Klint, Denmark): Implications for Our Understanding of Species-Selective Extinction. Catastrophic Events and Mass Extinctions: Impacts and Beyond, 2002 356

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/