Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure

Bo Feng, Xinzhuan Guo

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (3) : 770-777.

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (3) : 770-777. DOI: 10.1007/s12583-021-1574-0
Pacific Plate Subduction and the Yanshanian Movement in Eastern China

Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure

Author information +
History +

Abstract

Orthopyroxene is an important constitutive mineral in the crust and the upper mantle. Its thermal properties play a key role in constructing the thermal structure of the crust and the upper mantle. In this study, we developed a new method to synthesize polycrystalline ferrosilite, one end-member of orthopyroxene, via the reaction of FeO + SiO2 → FeSiO3. We found that the P-T condition of 3 GPa and 1 273 K is suitable to synthesize dense ferrosilite samples with low porosity. We employed the transient plane-source method to investigate the thermal conductivity κ and thermal diffusivity D of synthetic ferrosilite at 1 GPa and 293–873 K, of which, κ = 1.786 + 1.048 × 103 T −1 − 9.269 × 104 T −2 and D = 0.424 + 0.223 × 103 T −1 + 1.64 × 104 T −2. Our results suggest phonon conduction should be the dominant mechanism at P-T conditions of interest since the thermal conductivity and the thermal diffusivity of ferrosilite both decrease with increasing temperature. The calculated heat capacity of ferrosilite at 1 GPa increases with temperature, which increases with increasing temperature with about 10% per 100 K (<500 K) and 4% per 100 K (>500 K). Iron content of an asteroid significantly influences its thermal evolution history and temperature distribution inside. It is expected that the mantle temperature of the Fe-rich asteroid will be higher and the Fe-rich asteroid’s cooling history will be longer.

Keywords

ferrosilite / high pressure / thermal conductivity / thermal diffusivity / synthesis

Cite this article

Download citation ▾
Bo Feng, Xinzhuan Guo. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 2022, 33(3): 770‒777 https://doi.org/10.1007/s12583-021-1574-0

References

Akimoto S I, Fujisawa H, Katsura T. Synthesis of FeSiO3 Pyroxene (Ferrosilite) at High Pressures. Proceedings of the Japan Academy, 1964, 40(4): 272-275.
CrossRef Google scholar
Bowen N L, Schairer J F. The System MgO−FeO−SiO2. American Journal of Science, 1935, 29(170): 151-217.
CrossRef Google scholar
Chang Y Y, Hsieh W P, Tan E, . Hydration-Reduced Lattice Thermal Conductivity of Olivine in Earth’s Upper Mantle. PNAS, 2017, 114(16): 4078-4081.
CrossRef Google scholar
Clauser C. Thermal Storage and Transport Properties of Rocks, I: Heat Capacity and Latent Heat, 2011, Dordrecht: Springer, 1423-1431
Dzhavadov L N. Measurement of Thermophysical Properties of Dielectrics under Pressure. High Temperatures-High Pressures, 1975, 7(1): 49-54
Fu H F, Zhang B H, Ge J H, . Thermal Diffusivity and Thermal Conductivity of Granitoids at 283–988 K and 0.3–1.5 GPa. American Mineralogist, 2019, 104(11): 1533-1545.
CrossRef Google scholar
Gaul O F, Griffin W L, O’Reilly S Y, . Mapping Olivine Composition in the Lithospheric Mantle. Earth and Planetary Science Letters, 2000, 182(3/4): 223-235.
CrossRef Google scholar
Gibert B, Seipold U, Tommasi A, . Thermal Diffusivity of Upper Mantle Rocks: Influence of Temperature, Pressure, and the Deformation Fabric. Journal of Geophysical Research: Solid Earth, 2003, 108(B8): 2359
CrossRef Google scholar
Giuli G, Paris E, Wu Z Y, . Fe and Mg Local Environment in the Synthetic Enstatite-Ferrosilite Join: An Experimental and Theoretical XANES and XRD Study. European Journal of Mineralogy, 2002, 14 2 429-436.
CrossRef Google scholar
Hofmeister A M. Pressure Dependence of Thermal Transport Properties. PNAS, 2007, 104(22): 9192-9197.
CrossRef Google scholar
Hofmeister A M. Thermal Diffusivity of Orthopyroxenes and Protoenstatite as a Function of Temperature and Chemical Composition. European Journal of Mineralogy, 2012, 24(4): 669-681.
CrossRef Google scholar
Hofmeister A M, Pertermann M. Thermal Diffusivity of Clinopyroxenes at Elevated Temperature. European Journal of Mineralogy, 2008, 20(4): 537-549.
CrossRef Google scholar
Hugh-Jones D A, Angel R J. Effect of Ca2+ and Fe2+ on the Equation of State of MgSiO3 Orthopyroxene. Journal of Geophysical Research: Solid Earth, 1997, 102(B6): 12333-12340.
CrossRef Google scholar
Hunt S A, Walker A M, McCormack R J, . The Effect of Pressure on Thermal Diffusivity in Pyroxenes. Mineralogical Magazine, 2011, 75(5): 2597-2610.
CrossRef Google scholar
Khan A, Liebske C, Rozel A, . A Geophysical Perspective on the Bulk Composition of Mars. Journal of Geophysical Research: Planets, 2018, 123(2): 575-611.
CrossRef Google scholar
Kung J, Li B S. Lattice Dynamic Behavior of Orthoferrosilite (FeSiO3) Toward Phase Transition under Compression. The Journal of Physical Chemistry C, 2014, 118(23): 12410-12419.
CrossRef Google scholar
Lindsley D H, Davis B T, MacGregor I D. Ferrosilite (FeSiO3): Synthesis at High Pressures and Temperatures. Science, 1964, 144(3614): 73-74.
CrossRef Google scholar
Newnham R E. Structure-Property Relations, 1975, Berlin: Springer-Verlag, 60-64.
CrossRef Google scholar
Ono S, Oganov A R. In situ Observations of Phase Transition between Perovskite and CaIrO3-Type Phase in MgSiO3 and Pyrolitic Mantle Composition. Earth and Planetary Science Letters, 2005, 236(3/4): 914-932.
CrossRef Google scholar
Osako M, Ito E, Yoneda A. Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure. Physics of the Earth and Planetary Interiors, 2004, 143/144: 311-320.
CrossRef Google scholar
Ringwood A E. Composition and Petrology of the Earth’s Mantle, 1975, New York: McGraw-Hill
Ringwood A E. Phase Transformations and Their Bearing on the Constitution and Dynamics of the Mantle. Geochimica et Cosmochimica Acta, 1991, 55(8): 2083-2110.
CrossRef Google scholar
Sanchez J A, Reddy V, Kelley M S, . Olivine-Dominated Asteroids: Mineralogy and Origin. Icarus, 2014, 228(2): 288-300.
CrossRef Google scholar
Saxena S K, Shen G Y. Assessed Data on Heat Capacity, Thermal Expansion, and Compressibility for some Oxides and Silicates. Journal of Geophysical Research: Solid Earth, 1992, 97(B13): 19813-19825.
CrossRef Google scholar
Schatz J F, Simmons G. Thermal Conductivity of Earth Materials at High Temperatures. Journal of Geophysical Research, 1972, 77(35): 6966-6983.
CrossRef Google scholar
Stalder R. Influence of Fe, Cr and Al on Hydrogen Incorporation in Orthopyroxene. European Journal of Mineralogy, 2004, 16(5): 703-711.
CrossRef Google scholar
Stalder R, Kronz A, Schmidt B C. Raman Spectroscopy of Synthetic (Mg, Fe)SiO3 Single Crystals: An Analytical Tool for Natural Orthopyroxenes. European Journal of Mineralogy, 2009, 21(1): 27-32.
CrossRef Google scholar
Sunshine J M, Bus S J, Corrigan C M, . Olivine-Dominated Asteroids and Meteorites: Distinguishing Nebular and Igneous Histories. Meteoritics & Planetary Science, 2007, 42(2): 155-170.
CrossRef Google scholar
Wang C, Yoneda A, Osako M, . Measurement of Thermal Conductivity of Omphacite, Jadeite, and Diopside up to 14 GPa and 1 000 K: Implication for the Role of Eclogite in Subduction Slab. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6277-6287.
CrossRef Google scholar
Xiong J, Lin H Y, Ding H S, . Investigation on Thermal Property Parameters Characteristics of Rocks and Its Influence Factors. Natural Gas Industry B, 2020, 7(3): 298-308.
CrossRef Google scholar
Xu J G, Fan D W, Zhang D Z, . Phase Transition of Enstatite-Ferrosilite Solid Solutions at High Pressure and High Temperature: Constraints on Metastable Orthopyroxene in Cold Subduction. Geophysical Research Letters, 2020, 47(12): 1-10.
CrossRef Google scholar
Yoneda A, Osako M, Ito E. Heat Capacity Measurement under High Pressure: A Finite Element Method Assessment. Physics of the Earth and Planetary Interiors, 2009, 174(1/2/3/4): 309-314.
CrossRef Google scholar
Zhang B H, Ge J H, Xiong Z L, . Effect of Water on the Thermal Properties of Olivine with Implications for Lunar Internal Temperature. Journal of Geophysical Research: Planets, 2019, 124(12): 3469-3481.
CrossRef Google scholar
Zhang B H, Yoshino T. Effect of Temperature, Pressure and Iron Content on the Electrical Conductivity of Orthopyroxene. Contributions to Mineralogy and Petrology, 2016, 171(12): 1-12.
CrossRef Google scholar
Zhang Y Y, Yoshino T, Yoneda A, . Effect of Iron Content on Thermal Conductivity of Olivine with Implications for Cooling History of Rocky Planets. Earth and Planetary Science Letters, 2019, 519: 109-119.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/