Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure

Bo Feng , Xinzhuan Guo

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (3) : 770 -777.

PDF
Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (3) : 770 -777. DOI: 10.1007/s12583-021-1574-0
Pacific Plate Subduction and the Yanshanian Movement in Eastern China

Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure

Author information +
History +
PDF

Abstract

Orthopyroxene is an important constitutive mineral in the crust and the upper mantle. Its thermal properties play a key role in constructing the thermal structure of the crust and the upper mantle. In this study, we developed a new method to synthesize polycrystalline ferrosilite, one end-member of orthopyroxene, via the reaction of FeO + SiO2 → FeSiO3. We found that the P-T condition of 3 GPa and 1 273 K is suitable to synthesize dense ferrosilite samples with low porosity. We employed the transient plane-source method to investigate the thermal conductivity κ and thermal diffusivity D of synthetic ferrosilite at 1 GPa and 293–873 K, of which, κ = 1.786 + 1.048 × 103 T −1 − 9.269 × 104 T −2 and D = 0.424 + 0.223 × 103 T −1 + 1.64 × 104 T −2. Our results suggest phonon conduction should be the dominant mechanism at P-T conditions of interest since the thermal conductivity and the thermal diffusivity of ferrosilite both decrease with increasing temperature. The calculated heat capacity of ferrosilite at 1 GPa increases with temperature, which increases with increasing temperature with about 10% per 100 K (<500 K) and 4% per 100 K (>500 K). Iron content of an asteroid significantly influences its thermal evolution history and temperature distribution inside. It is expected that the mantle temperature of the Fe-rich asteroid will be higher and the Fe-rich asteroid’s cooling history will be longer.

Keywords

ferrosilite / high pressure / thermal conductivity / thermal diffusivity / synthesis

Cite this article

Download citation ▾
Bo Feng, Xinzhuan Guo. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 2022, 33(3): 770-777 DOI:10.1007/s12583-021-1574-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akimoto S I, Fujisawa H, Katsura T. Synthesis of FeSiO3 Pyroxene (Ferrosilite) at High Pressures. Proceedings of the Japan Academy, 1964, 40(4): 272-275.

[2]

Bowen N L, Schairer J F. The System MgO−FeO−SiO2. American Journal of Science, 1935, 29(170): 151-217.

[3]

Chang Y Y, Hsieh W P, Tan E, . Hydration-Reduced Lattice Thermal Conductivity of Olivine in Earth’s Upper Mantle. PNAS, 2017, 114(16): 4078-4081.

[4]

Clauser C. Thermal Storage and Transport Properties of Rocks, I: Heat Capacity and Latent Heat, 2011, Dordrecht: Springer, 1423-1431

[5]

Dzhavadov L N. Measurement of Thermophysical Properties of Dielectrics under Pressure. High Temperatures-High Pressures, 1975, 7(1): 49-54

[6]

Fu H F, Zhang B H, Ge J H, . Thermal Diffusivity and Thermal Conductivity of Granitoids at 283–988 K and 0.3–1.5 GPa. American Mineralogist, 2019, 104(11): 1533-1545.

[7]

Gaul O F, Griffin W L, O’Reilly S Y, . Mapping Olivine Composition in the Lithospheric Mantle. Earth and Planetary Science Letters, 2000, 182(3/4): 223-235.

[8]

Gibert B, Seipold U, Tommasi A, . Thermal Diffusivity of Upper Mantle Rocks: Influence of Temperature, Pressure, and the Deformation Fabric. Journal of Geophysical Research: Solid Earth, 2003, 108(B8): 2359

[9]

Giuli G, Paris E, Wu Z Y, . Fe and Mg Local Environment in the Synthetic Enstatite-Ferrosilite Join: An Experimental and Theoretical XANES and XRD Study. European Journal of Mineralogy, 2002, 14 2 429-436.

[10]

Hofmeister A M. Pressure Dependence of Thermal Transport Properties. PNAS, 2007, 104(22): 9192-9197.

[11]

Hofmeister A M. Thermal Diffusivity of Orthopyroxenes and Protoenstatite as a Function of Temperature and Chemical Composition. European Journal of Mineralogy, 2012, 24(4): 669-681.

[12]

Hofmeister A M, Pertermann M. Thermal Diffusivity of Clinopyroxenes at Elevated Temperature. European Journal of Mineralogy, 2008, 20(4): 537-549.

[13]

Hugh-Jones D A, Angel R J. Effect of Ca2+ and Fe2+ on the Equation of State of MgSiO3 Orthopyroxene. Journal of Geophysical Research: Solid Earth, 1997, 102(B6): 12333-12340.

[14]

Hunt S A, Walker A M, McCormack R J, . The Effect of Pressure on Thermal Diffusivity in Pyroxenes. Mineralogical Magazine, 2011, 75(5): 2597-2610.

[15]

Khan A, Liebske C, Rozel A, . A Geophysical Perspective on the Bulk Composition of Mars. Journal of Geophysical Research: Planets, 2018, 123(2): 575-611.

[16]

Kung J, Li B S. Lattice Dynamic Behavior of Orthoferrosilite (FeSiO3) Toward Phase Transition under Compression. The Journal of Physical Chemistry C, 2014, 118(23): 12410-12419.

[17]

Lindsley D H, Davis B T, MacGregor I D. Ferrosilite (FeSiO3): Synthesis at High Pressures and Temperatures. Science, 1964, 144(3614): 73-74.

[18]

Newnham R E. Structure-Property Relations, 1975, Berlin: Springer-Verlag, 60-64.

[19]

Ono S, Oganov A R. In situ Observations of Phase Transition between Perovskite and CaIrO3-Type Phase in MgSiO3 and Pyrolitic Mantle Composition. Earth and Planetary Science Letters, 2005, 236(3/4): 914-932.

[20]

Osako M, Ito E, Yoneda A. Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure. Physics of the Earth and Planetary Interiors, 2004, 143/144: 311-320.

[21]

Ringwood A E. Composition and Petrology of the Earth’s Mantle, 1975, New York: McGraw-Hill

[22]

Ringwood A E. Phase Transformations and Their Bearing on the Constitution and Dynamics of the Mantle. Geochimica et Cosmochimica Acta, 1991, 55(8): 2083-2110.

[23]

Sanchez J A, Reddy V, Kelley M S, . Olivine-Dominated Asteroids: Mineralogy and Origin. Icarus, 2014, 228(2): 288-300.

[24]

Saxena S K, Shen G Y. Assessed Data on Heat Capacity, Thermal Expansion, and Compressibility for some Oxides and Silicates. Journal of Geophysical Research: Solid Earth, 1992, 97(B13): 19813-19825.

[25]

Schatz J F, Simmons G. Thermal Conductivity of Earth Materials at High Temperatures. Journal of Geophysical Research, 1972, 77(35): 6966-6983.

[26]

Stalder R. Influence of Fe, Cr and Al on Hydrogen Incorporation in Orthopyroxene. European Journal of Mineralogy, 2004, 16(5): 703-711.

[27]

Stalder R, Kronz A, Schmidt B C. Raman Spectroscopy of Synthetic (Mg, Fe)SiO3 Single Crystals: An Analytical Tool for Natural Orthopyroxenes. European Journal of Mineralogy, 2009, 21(1): 27-32.

[28]

Sunshine J M, Bus S J, Corrigan C M, . Olivine-Dominated Asteroids and Meteorites: Distinguishing Nebular and Igneous Histories. Meteoritics & Planetary Science, 2007, 42(2): 155-170.

[29]

Wang C, Yoneda A, Osako M, . Measurement of Thermal Conductivity of Omphacite, Jadeite, and Diopside up to 14 GPa and 1 000 K: Implication for the Role of Eclogite in Subduction Slab. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6277-6287.

[30]

Xiong J, Lin H Y, Ding H S, . Investigation on Thermal Property Parameters Characteristics of Rocks and Its Influence Factors. Natural Gas Industry B, 2020, 7(3): 298-308.

[31]

Xu J G, Fan D W, Zhang D Z, . Phase Transition of Enstatite-Ferrosilite Solid Solutions at High Pressure and High Temperature: Constraints on Metastable Orthopyroxene in Cold Subduction. Geophysical Research Letters, 2020, 47(12): 1-10.

[32]

Yoneda A, Osako M, Ito E. Heat Capacity Measurement under High Pressure: A Finite Element Method Assessment. Physics of the Earth and Planetary Interiors, 2009, 174(1/2/3/4): 309-314.

[33]

Zhang B H, Ge J H, Xiong Z L, . Effect of Water on the Thermal Properties of Olivine with Implications for Lunar Internal Temperature. Journal of Geophysical Research: Planets, 2019, 124(12): 3469-3481.

[34]

Zhang B H, Yoshino T. Effect of Temperature, Pressure and Iron Content on the Electrical Conductivity of Orthopyroxene. Contributions to Mineralogy and Petrology, 2016, 171(12): 1-12.

[35]

Zhang Y Y, Yoshino T, Yoneda A, . Effect of Iron Content on Thermal Conductivity of Olivine with Implications for Cooling History of Rocky Planets. Earth and Planetary Science Letters, 2019, 519: 109-119.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/