A Prediction Method of Ground Motion for Regions without Available Observation Data (LGB-FS) and Its Application to both Yangbi and Maduo Earthquakes in 2021
Jin Chen , Hong Tang , Wenkai Chen , Naisen Yang
Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (4) : 869 -884.
A Prediction Method of Ground Motion for Regions without Available Observation Data (LGB-FS) and Its Application to both Yangbi and Maduo Earthquakes in 2021
Currently available earthquake attenuation equations are locally applicable, and methods based on observation data are not applicable in areas without available observation data. To solve the above problems and further improve the prediction accuracy of ground motion parameters, we present a prediction model referred to as a light gradient boosting machine with feature selection (LGB-FS). It is based on a light gradient boosting machine (LightGBM) constructed using historical strong motion data from the NGA-west2 database and can quickly simulate the distribution of strong motion near the epicenter after an earthquake. Cases study shows that compared with GMPE methods and those based on real-time observation data, the model has a better prediction effect in areas without available observation data and can be applied to Yangbi Earthquake and Maduo Earthquake. The feature importance evaluation based on both information gains and partial dependence plots (PDPs) reveals the complex relationships between multiple factors and ground motion parameters, allowing us to better understand their mechanisms and connections.
LightGBM / ground motion parameters / NGA-west2 / feature selection / Yangbi / Maduo / earthquakes
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Aptikaev, F., Kopnichev, J., 1980. Correlation between Seismic Vibration Parameters and Type of Faulting. In: Proceedings of Seventh World Conference on Earthquake Engineering. September 8–13, 1980, Istanbul |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
Ke, G. L., Meng, Q., Finley, T., et al., 2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: NIPS’ 17: Proceeding of the 31st International Conference on Neural Information Processing Systems, December 2017, New York |
| [30] |
Molnar, C., 2019. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
Yenier, E., Erdoğan, Ö., Akkar, S., 2008. Empirical Relationships for Magnitude and Source-to-Site Distance Conversions Using Recently Compiled Turkish Strong-Ground Motion Database. In: The 14th World Conference on Earthquake Engineering. October 12–17, 2008, Beijing |
| [41] |
|
| [42] |
|
| [43] |
|
/
| 〈 |
|
〉 |