Multiple-Stage Mineralization in the Huayangchuan U−REE−Mo−Cu−Fe Ore Belt of the Qinling Orogen, Central China: Geological and Re−Os Geochronological Constraints

Hongjun Jiang , Chunsi Yang , Dequan Wang , Hui Zheng , Jie Li , Huayong Chen

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 193 -204.

PDF
Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 193 -204. DOI: 10.1007/s12583-021-1557-1
Article

Multiple-Stage Mineralization in the Huayangchuan U−REE−Mo−Cu−Fe Ore Belt of the Qinling Orogen, Central China: Geological and Re−Os Geochronological Constraints

Author information +
History +
PDF

Abstract

The Huayangchuan ore belt is located in the western segment of Xiaoqinling Orogen in the southern margin of the North China Craton (NCC), and hosts voluminous magmatism and significant U−REE−Mo−Cu−Fe polymetallic mineralization. However, geochronological framework of the various mineralization phases in this region is poorly understood. Here, we present new Re−Os isochron ages on magnetite from the Caotan Fe deposit (2 675 ± 410 Ma, MSWD = 0.55), and on pyrite from the Jialu REE deposit (2 127 ± 280 Ma, MSWD = 1.9) and Yuejiawa Cu deposit (418 ± 23 Ma, MSWD = 11.5), and Re−Os weighted average model age on pyrite from the Taoyuan Mo−U deposit (235 ± 14 Ma, MSWD = 0.17). These ages, combined with regional geology and mineralization ages from other deposits, suggest that mineralization in the Huayangchuan ore belt lasted from the Neoarchean to the Late Mesozoic. The mineralization corresponds to regional tectono-magmatic events, including the Neoar-chean alkali magmatism (REE mineralization), Paleoproterozoic plagioclase-amphibolite emplacement (Fe mineralization), Paleoproterozoic pegmatite magmatism (U mineralization), Paleozoic Shangdan oceanic slab subduction-related arc magmatism (Cu mineralization), Early Mesozoic Paleo-Tethys Ocean subduction-related arc magmatism (Mo−U mineralization), and Late Mesozoic Paleo-Pacific oceanic plate subduction direction change-related Mo(-Pb) mineralization. We proposed that the Huayang-chuan ore belt has undergone prolonged metallogenic evolution, and the magmatism and associated mineralization were controlled by regional geodynamic events.

Keywords

Re−Os dating / U−REE−Mo−Cu−Fe mineralization / Huayangchuan ore belt / extra-long metallogenic history / Qinling Orogen / geochemistry

Cite this article

Download citation ▾
Hongjun Jiang, Chunsi Yang, Dequan Wang, Hui Zheng, Jie Li, Huayong Chen. Multiple-Stage Mineralization in the Huayangchuan U−REE−Mo−Cu−Fe Ore Belt of the Qinling Orogen, Central China: Geological and Re−Os Geochronological Constraints. Journal of Earth Science, 2022, 33(1): 193-204 DOI:10.1007/s12583-021-1557-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai, X. S., Liang, Z. C., Guo, P. F., et al., 2002. Geological Survey Report of Caotan Fe Deposit in Huayin City, Shaanxi Province No. 139 Brigade of Shaanxi Provincial Bureau of Coal Geology, Xi’an. Unpublished Report. 1–23 (in Chinese)

[2]

Bao Z W, Wang C Y, Zhao T P, . Petrogenesis of the Mesozoic Granites and Mo Mineralization of the Luanchuan Ore Field in the East Qinling Mo Mineralization Belt, Central China. Ore Geology Reviews, 2014, 57: 132-153.

[3]

Bi S J, Li J W, Li Z K. Geological Significance and Geochronology of Paleoproterozoic Mafic Dykes of Xiaoqinling Gold District, Southern Margin of the North China Craton. Earth Science, 2011, 36(1): 17-32

[4]

Birck J L, Barman M R, Capmas F. Re−Os Isotopic Measurements at the Femtomole Level in Natural Samples. Geostandards and Geoanalytical Research, 1997, 21(1): 19-27.

[5]

Cai J X, Yu L L, Xu D R, . Multiple Episodes of Tectono-Thermal Disturbances in the Huayangchuan U−Nb−Pb Polymetallic Deposit in the Xiaoqinling Region, Central China and Their Significances on Metallogeny. Ore Geology Reviews, 2020, 127: 103755

[6]

Cao M P, Yao J M, Deng X H, . Diverse and Multistage Mo, Au, Ag−Pb−Zn and Cu Deposits in the Xiong’er Terrane, East Qinling: From Triassic Cu Mineralization. Ore Geology Reviews, 2017, 81 565-574.

[7]

Chen Y J. Indosinian Tectonic Setting, Magmatism and Metallogenesis in Qinling Orogen, Central China. Geology in China, 2010, 37(4): 854-865

[8]

Condie K C, Aster R C. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Research, 2010, 180(3/4): 227-236.

[9]

Condie K C, O’Neill C, Aster R C. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 2009, 282(1/2/3/4): 294-298.

[10]

Deng X Q, Peng T P, Zhao T P, . Petrogenesis of the Late Paleoproterozoic (∼1.84 Ga) Yuantou A-Type Granite in the Southern Margin of the North China Craton and Its Tectonic Implications. Acta Petrologica Sinica, 2019, 35(8): 2455-2469.

[11]

Dai J Z, Qian Z Z, Gao J S, . Geological and Geochemical Characteristics of the Xigou Mo Deposit in Huaxian County, Shaanxi Province: Constraint for Its Metallogenesis. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 705-713

[12]

Ding L X, Ma C Q, Li J W, . Timing and Genesis of the Adakitic and Shoshonitic Intrusions in the Laoniushan Complex, Southern Margin of the North China Craton: Implications for Post-Collisional Magmatism Associated with the Qinling Orogen. Lithos, 2011, 126(3/4): 212-232.

[13]

Ding L X, Ma C Q, Li J W, . Geochronological, Geochemical and Mineralogical Constraints on the Petrogenesis of Appinites from the Laoniushan Complex, Eastern Qinling, Central China. Geochemistry, 2016, 76(4): 579-595.

[14]

Diwu C R, Liu X, Sun Y. The Composition and Evolution of the Taihua Complex in the Southern North China Craton. Acta Petrologica Sinica, 2018, 34(4): 999-1018

[15]

Dong Y P, Zhang G W, Neubauer F, . Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.

[16]

Dong Y P, Santosh M. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 2016, 29(1): 1-40.

[17]

Fan H R, Niu H C, Li X C, . The Types, Ore Genesis and Resource Perspective of Endogenic REE Deposits in China. Science Bulletin, 2020, 65: 3778-3793.

[18]

Gao L G, Chen Y W, Bi X W, . Chronology and Mineral Chemistry of the Uranium Minerals in Huayangchuan Uranium-Niobium Deposit, Shaanxi Province and Itsimplications for Uranium Mineralization. Acta Geologica Sinica, 2019, 93(9): 2273-2291

[19]

Guo B, Zhu LM, Li B, . Zircon U−Pb Age and Hf Isotope Composition of the Huashan and Heyu Granite Plutons at the Southern Margin of North China Craton: Implications for Geodynamic Setting. Acta Petrologica Sinica, 2009, 25(2): 265-281

[20]

Guo W, Zhou D W, Ren J F, . Characteristics of the Huayangchuan Ductile Shear Zones in the Xiaoqinling Mountains, Shaanxi, China, and Its Regional Tectonic Significance. Geological Bulletin of China, 2008, 27(6): 823-828

[21]

He S, Li Z Y, Hui X C, . 40Ar/39Ar Geochronology of Biotite in Huayangchuan Uranium-Polymetallic Deposit in Shaanxi Province and Its Geological Significance. Uranium Geology, 2016, 32: 161-166.

[22]

Hu J, Jiang S Y, Zhao H X, . Geochemistry and Petrogenesis of the Huashan Granites and Their Implications for the Mesozoic Tectonic Settings in the Xiaoqinling Gold Mineralization Belt, NW China. Journal of Asian Earth Sciences, 2012, 56: 276-289.

[23]

Huang D H, Nie F J, Wang Y C, . Lead Isotope Compositions of Molybdenum Deposits in East Qinling as Applied to the Problem of Ore Sources. Mineral Deposits, 1984, 3(4): 20-28

[24]

Huang D H, Wu C Y, Du A D, . Re−Os Isotope Ages of Molybdenum Deposits in East Qinling and Their Significance. Chinese Journal of Geochemistry, 1995, 14(4): 313-322.

[25]

Huang D H, Hou Z Q, Yang Z M, . Geological and Geochemical Characteristics, Metallogenetic Mechanism and Tectonic Setting of Carbonatite Vein-Type Mo(Pb) Deposits in the East Qinling Molybdenum Ore Belt. Acta Geologica Sinica, 2009, 83(12): 1968-1984

[26]

Huang, J. C., Huang, Z. Y., Nan, B. J., 1972. Survey and Evaluation of Jialu Rare Earth Element Deposit in Luonan City, Shaanxi Province. No. 139 Brigade of Shaanxi Geological Bureau, Xi’an. Unpublished Report, 1–59 (in Chinese)

[27]

Huang X W, Qi L, Wang Y C, . Re−Os Dating of Magnetite from the Shaquanzi Fe-Cu Deposit, Eastern Tianshan, NW China. Science China Earth Sciences, 2014, 57(2): 267-277.

[28]

Jia X L. Research for Taihua Complex in Xiaoqinling and Lushan Areas: Implications for the Evolution of the Crystalline Basement in Southern North China Craton, 2016, Xi’an: Northwest University

[29]

Jia X L, Zhai M G, Xiao W J, . Mesoarchean to Paleoproterozoic Crustal Evolution of the Taihua Complex in the Southern North China Craton. Precambrian Research, 2020, 337: 105451

[30]

Jiang S Y, Yang J H, Zhao K D, . Re−Os Isotope Tracer and Dating Methods in Ore Deposit Research. Journal of Nanjing University (Natural Sciences), 2000, 36 669-677.

[31]

Jiang H J, Gao C, Kang Q, . Mineralization Paragenesis of Huayangchuan U−Nb−Pb Deposit in the Lesser Qinling. Geotectonica et Metallogenia, 2020, 6: 404-421.

[32]

Jiao J G, Tang Z L, Qian Z Z, . Metallogenic Mechanism, Magma Source and Zircon U−Pb Age of Jinduicheng Granitic Porphyry, East Qinling. Earth Science, 2010, 35: 1011-1012.

[33]

Li C L. The Geochronology and Tectonic Implications of Granite Gneiss and Xiaohe Granite in Taihua Group of Xiaoqinling Area, 2011, Beijing: China University of Geosciences

[34]

Li J, Jiang X Y, Xu J F, . Determination of Platinum-Group Elements and Re−Os Isotopes Using ID-ICP-MS and N-TIMS from a Single Digestion after Two-Stage Column Separation. Geostandards and Geoanalytical Research, 2014, 38(1): 37-50.

[35]

Li X C, Yang K F, Spandler C, . The Effect of Fluid-Aided Modification on the Sm−Nd and Th−Pb Geochronology of Monazite and Bastnäsite: Implication for Resolving Complex Isotopic Age Data in REE Ore Systems. Geochimica et Cosmochimica Acta, 2021, 300: 1-24.

[36]

Liu Y C. Detailed Survey Report of Yuejiawa Cu Deposit Huayang Town, Huayin City, Shaanxi Province, 2002, Huayin: Huayin Shunfa Copper Co. Ltd., 1-27. Unpublished Report

[37]

Lu X X. The Evolutional Process of Qinling Tectonics Revealed by Qinling Granite-Advance in Study on Qinling Granite. Advance in Earth Science, 1998, 13: 213-214.

[38]

Ludwig K R. User’s Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel, 2003, Berkeley: Berkeley Geochronology Center

[39]

Morgan J W, Walker R J. Isotopic Determinations of Rhenium and Osmium in Meteorites by Using Fusion, Distillation and Ion-Exchange Separations. Analytica Chimica Acta, 1989, 222(1): 291-300.

[40]

Peng, Y. S., Zhou, Q. S., Cai, W. H., et al., 1983. Analysis of Uranium Mineralization Characteristics and Metallogenic Geological Conditions in Taoyuan-Huanglongpu Area. No. 203 Research Institute of Nuclear Industr, Xianyang. Unpublished Report. 1–56 (in Chinese)

[41]

Qi Q J, Wang X X, Ke C H, . Geochronology and Origin of the Laoniushan Complex in the Southern Margin of North China Block and Their Implications: New Evidences from Zircon Dating, Hf Isotopes and Geochemistry. Acta Petrologica Sinica, 2012, 28: 279-301.

[42]

Qiu J X, Yu X H, Zeng G C, . The Alkaline Rocks of Qinling-Bashan, 1993, Beijing: Geology Publishing House

[43]

Ren J S. The Basic Characteristics of the Tectonic Evolution of the Continental Lithosphere in China. Regional Geology of China, 1991, 10(4): 289-293

[44]

Selby D, Creaser R A, Stein H J, . Assessment of the 187Re Decay Constant by Cross Calibration of Re−Os Molybdenite and U−Pb Zircon Chronometers in Magmatic Ore Systems. Geochimica et Cosmochimica Acta, 2007, 71(8): 1999-2013.

[45]

Selby D, Kelley K D, Hitzman M W, . Re−Os Sulfide (Bornite, Chalcopyrite, and Pyrite) Systematics of the Carbonate-Hosted Copper Deposits at Ruby Creek, Southern Brooks Range, Alaska. Economic Geology, 2009, 104(3): 437-444.

[46]

Smoliar M I, Walker R J, Morgan J W. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 1996, 271(5252): 1099-1102.

[47]

Stein H J, Markey R J, Morgan J W, . Highly Precise and Accurate Re−Os Ages for Molybdenite from the East Qinling Molybdenum Belt, Shaanxi Province, China. Economic Geology, 1997, 92(7/8): 827-835.

[48]

Stein H J, Morgan J W, Scherstén A. Re−Os Dating of Low-Level Highly Radiogenic (LLHR) Sulfides: The Harnas Gold Deposit, Southwest Sweden, Records Continental-Scale Tectonic Events. Economic Geology, 2000, 95(8): 1657-1671

[49]

Song W, Xu C, Smith M P, . Origin of Unusual HREE-Mo-Rich Carbonatites in the Qinling Orogen, China. Sci Rep, 2016, 6: 37377

[50]

Tan J, Wei J H, Yang C F, . Application State of Isotopic Dating Methods for Ore Deposits. Geology and Prospecting, 2006, 42(3): 61-66

[51]

Wang J S, Wen H J, Li C, . Age and Metal Source of Orogenic Gold Deposits in Southeast Guizhou Province, China: Constraints from Re−Os and He−Ar Isotopic Evidence. Geoscience Frontiers, 2019, 10(2): 581-593.

[52]

Wang T H, Mao J W, Xie G Q, . Sr, Nd, Pb Isotopic Composition of the Meso-Basic Dykes in the Xiaoqinling-Xiong’ershan Area, Henan Province, Central China and Its Tectonic Significance. Acta Geologica Sinica, 2008, 82(11): 1580-1591

[53]

Wang X X, Wang T, Zhang C L. Neoproterozoic, Paleozoic, and Mesozoic Granitoid Magmatism in the Qinling Orogen, China: Constraints on Orogenic Process. Journal of Asian Earth Sciences, 2013, 72 129-151.

[54]

Walker R J, Morgan J W, Horan M F, . Re−Os Isotopic Evidence for an Enriched-Mantle Source for the Noril’sk-Type, Ore-Bearing Intrusions, Siberia. Geochimica et Cosmochimica Acta, 1994, 58(19): 4179-4197.

[55]

Xiong X, Zhu L M, Yuan H L, . In-situ Microanalysis of Pb Isotopic Compositions Using FsLA-MC-ICP-MS for the Tongyu Copper Deposit in the North Qinling Orogen and Its Geological Significance. Chinese Science Bulletin, 2016, 61(25): 2811-2822.

[56]

Xue S, Xu Y, Ling M X, . Geochemical Constraints on Genesis of Paleoproterozoic A-Type Granite in the South Margin of North China Craton. Lithos, 2018, 304/305/306/307: 489-500.

[57]

Xue S, Ling M X, Liu Y L, . The Formation of the Giant Huayangchuan U−Nb Deposit Associated with Carbonatite in the Qingling Orogenic Belt. Ore Geology Reviews, 2020, 122: 103498

[58]

Yan Z, Chen L, Buckman S, . Stratigraphy and Tectonic Setting of Laochang Massive Sulfide Deposit in the North Qinling Belt, Central China. Ore Geology Reviews, 2017, 81 96-111.

[59]

Yang C S, Zhao L D, Zheng H, . The Multiple Granitic Magmatism in the Giant Huayangchuan Uranium Polymetallic Ore District: Implications for Tectonic Evolution of the Southern Margin of North China Craton in the Qinling Orogen. Ore Geology Reviews, 2019, 112: 103055

[60]

Yu X H. Geological, Mineralogical Characteristics and Origin of the Carbonatites from Huayangchuan, Shaanxi Province. Earth Science, 1992, 17 151-158.

[61]

Yuan H C, Wang R T, Jiao J G, . Re−Os Isotopic Ages of Molybdenites from Xigou Mo Deposit in Huaxian of East Qinling and Their Geological Significance. Journal of Earth Sciences and Environment, 2014, 36(1): 120-127

[62]

Zeng W, Xu Y W, Sun F Y, . Molybdenite Re−Os Geochronology and S, Pb Isotopic Characteristics of Banchang Copper Polymetallic Deposit in Neixiang, Henan Province. Earth Science, 2019, 44(1): 109-122

[63]

Zhang G W, Zhang Z Q, Dong Y P. Nature of Main Tectono-Lithostratigraphic Units of the Qinling Orogen: Implications for the Tectonic Evolution. Acta Petrologica Sinica, 1995, 11(2): 101-114

[64]

Zhang H F, Gao S. Geochemistry, 2012, Beijing: Geological Publishing House, 180-184

[65]

Zhang X K, Ye H S, Li Z Y, . Zircon U−Pb Ages, Hf Isotopic Composition and Geochemistry of Dafuyu Granitoid Poluton from Huashan Complex Batholith in Xiaoqinling. Mineral Deposits, 2015, 34(2): 235-260

[66]

Zhao H J, Mao J W, Ye H S, . Geochronology and Geochemistry of the Alkaline Granite Porphyry and Diabase Dikes in Huanglongpu Area of Shaanxi Province: Petrogenesis and Implications for Tectonic Environment. Geology in China, 2010, 37(1): 12-27

[67]

Zhao H J, Ye H S, Li C. Re−Os Dating of Molybdenite from the Shijiawan Molybdenum Deposit in Shaanxi Province and Its Geological Implications. Acta Petrologica et Mineralogica, 2013, 32: 90-98.

[68]

Zhao Y, Yang Z Y, Ma X H. Geotectonic Transition from Paleoasian System and Paleotethyan System to Paleopacific Active Continental Margin in Eastern Asia. Scientia Geologica Sinica, 1994, 29(2): 105-119

[69]

Zheng H, Chen H Y, Li D F, . Timing of Carbonatite-Hosted U-Polymetallic Mineralization in the Supergiant Huayangchuan Deposit, Qinling Orogen: Constraints from Titanite U−Pb and Molybdenite Re−Os Dating. Geoscience Frontiers, 2020, 11(5): 1581-1592.

[70]

Zheng H, Chen H Y, Wu C, . Genesis of the Supergiant Huayangchuan Carbonatite-Hosted Uranium-Polymetallic Deposit in the Qinling Orogen, Central China. Gondwana Research, 2020, 86: 250-265.

[71]

Zhu L M, Zhang G W, Guo B, . U−Pb (LA-ICP-MS) Zircon Dating for the Large Jinduicheng Porphyry Mo Deposit in the East Qinling, China, and Its Metallogenetic Geodynamical Setting. Acta Geologica Sinica, 2008, 82(2): 204-220

[72]

Zhu L M, Zhang G W, Chen Y J, . Zircon U−Pb Ages and Geochemistry of the Wenquan Mo-Bearing Granitioids in West Qinling, China: Constraints on the Geodynamic Setting for the Newly Discovered Wenquan Mo Deposit. Ore Geology Reviews, 2011, 39(1/2): 46-62.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/