Long-Term Reproducibility of SIMS Zircon U-Pb Geochronology

Wenhao Zhao, Qiuli Li, Yu Liu, Guoqiang Tang, Xiaoxiao Ling, Jiao Li, Xianhua Li

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 17-24.

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 17-24. DOI: 10.1007/s12583-021-1549-1
Article

Long-Term Reproducibility of SIMS Zircon U-Pb Geochronology

Author information +
History +

Abstract

Secondary ion mass spectrometry (SIMS) zircon U-Pb dating has been widely used to confine the absolute ages of the magmatic or metamorphic events and to distinguish multiple events. Here, a data set consisting of the zircon standards dating data (∼15 000 Plešovice and ∼8 000 Qinghu items) accumulated for more than 8 years using the CAMECA IMS 1280HR of the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS) is compiled to evaluate the long-term external reproducibility. With Plešovice zircon as the calibration standard and Qinghu zircon as an unknown sample, the analytical uncertainties for single-spot (n = 7 723) and session analyses (n = 691, with more than 7 single spot analyses in one session) are 2.6% and 0.9% (2RSD, relative standard deviation), respectively. It means that single-spot U-Pb dating for a standard-level zircon sample could vary 5.2% at 95% confidence level, while the average value (n > 7) for each session may vary 1.8%. Thus, these values should be considered as the minimum uncertainty when comparing single spot and individual session analysis results for multiple dating works on a certain geological event.

Keywords

zircon / U-Pb dating / SIMS / uncertainty / reproducibility

Cite this article

Download citation ▾
Wenhao Zhao, Qiuli Li, Yu Liu, Guoqiang Tang, Xiaoxiao Ling, Jiao Li, Xianhua Li. Long-Term Reproducibility of SIMS Zircon U-Pb Geochronology. Journal of Earth Science, 2022, 33(1): 17‒24 https://doi.org/10.1007/s12583-021-1549-1

References

Black L P, Jagodzinski E A. Importance of Establishing Sources of Uncertainty for the Derivation of Reliable SHRIMP Ages. Australian Journal of Earth Sciences, 2003, 50(4): 503-512.
CrossRef Google scholar
Cheng Y H, Zhang X W, Wang S Y, . Zircon U-Pb Dating and Geochemistry of Late Carboniferous Pyroxene Peridotite in Dong Ujimqi Inner Mongolia and Its Tectonic Significance. Earth Science, 2020, 45(3): 844-855
Claesson S. Isotopic Evidence for the Precambrian Provenance and Caledonian Metamorphism of High Grade Paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, 1987, 97(2): 196-204.
CrossRef Google scholar
Compston W. Effect of Pb Loss on the Ages of Reference Zircons QGNG and SL13, and of Volcanic Zircons from the Early Devonian Merrions and Turondale Formations, New South Wales. Australian Journal of Earth Sciences, 2001, 48(6): 797-803.
CrossRef Google scholar
Compston W, Williams I S, Meyer C. U-Pb Geochronology of Zircons from Lunar Breccia 73217 Using a Sensitive High Mass-Resolution Ion Microprobe. Journal of Geophysical Research Atmospheres, 1984, 89(S02): B525
CrossRef Google scholar
Davis D W, Williams I S, Krogh T E. Hanchar J M, Hoskin P W O. Historical Development of Zircon Geochronology. Zircon, 2003, Berlin, Boston: De Gruyter, 145-182.
CrossRef Google scholar
Fitzsimons I C W, Harte B, Clark R M. SIMS Stable Isotope Measurement: Counting Statistics and Analytical Precision. Mineralogical Magazine, 2000, 64(1): 59-83.
CrossRef Google scholar
Hinthorne J R, Andersen C A, Conrad R L, . Single-Grain 207Pb/206Pb and U/Pb Age Determinations with a 10- µm Spatial Resolution Using the Ion Microprobe Mass Analyzer (IMMA). Chemical Geology, 1979, 25(4): 271-303.
CrossRef Google scholar
Ireland T R. Hyman M, Greenwich R M. Ion Microprobe Mass Spectrometry: Techniques and Applications in Cosmochemistry, Geochemistry, and Geochronology. Advances in Analytical Geochemistry, 1995, Connecticut: JAI Press
Janoušek V, Krenn E, Finger F, . Hyperpotassic Granulites from Blanský Les (Moldanubian Zone, Bohemian Massif) Revisited. Journal of Geosciences, 2007, 57(1/2): 73-112
Jeon H, Whitehouse M J. A Critical Evaluation of U-Pb Calibration Schemes Used in SIMS Zircon Geochronology. Geostandards and Geoanalytical Research, 2015, 39(4): 443-452.
CrossRef Google scholar
Li Q L, Li X H, Lan Z W, . Monazite and Xenotime U-Th-Pb Geochronology by Ion Microprobe: Dating Highly Fractionated Granites at Xihuashan Tungsten Mine, SE China. Contributions to Mineralogy and Petrology, 2013, 166(1): 65-80.
CrossRef Google scholar
Li Q L, Li X H, Liu Y, . Precise U-Pb and Pb-Pb Dating of Phanerozoic Baddeleyite by SIMS with Oxygen Flooding Technique. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1107-1113.
CrossRef Google scholar
Li Q L, Liu Y, Tang G Q, . Zircon Th-Pb Dating by Secondary Ion Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 2018, 33(9): 1536-1544.
CrossRef Google scholar
Li T, Liu L, Liao X Y, . Geochemistry, Sr-Nd-Pb Isotopic Compositions and Zircon U-Pb Geochronology of Neoproterozoic Mafic Dyke in the Douling Complex, South Qinling Belt, China. Journal of Earth Science, 2020, 31(2): 237-248.
CrossRef Google scholar
Li X H, Liu X M, Liu Y S, . Accuracy of LA-ICPMS Zircon U-Pb Age Determination: An Inter-Laboratory Comparison. Science China Earth Sciences, 2015, 58(10): 1722-1730.
CrossRef Google scholar
Li X H, Liu Y, Li Q L, . Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 2009, 10(4): Q04010
CrossRef Google scholar
Li X H, Tang G Q, Gong B, . Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 2013, 58 36 4647-4654.
CrossRef Google scholar
Liu Y, Li Q L, Tang G Q, . Towards Higher Precision SIMS U-Pb Zircon Geochronology via Dynamic Multi-Collector Analysis. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 979-985.
CrossRef Google scholar
Ludwig K R. User’s Manual for Isoplot 4.15: A Geochronological Toolkit for Microsoft Excel, 2009, Berkeley: Berkeley Geochronology Center Special Publications
Schaltegger U, Schmitt A K, Horstwood M S A. U-Th-Pb Zircon Geochronology by ID-TIMS, SIMS, and Laser Ablation ICP-MS: Recipes, Interpretations, and Opportunities. Chemical Geology, 2015, 402: 89-110.
CrossRef Google scholar
Schmitz M D, Kuiper K F. High-Precision Geochronology. Elements, 2013, 9(1): 25-30.
CrossRef Google scholar
Schoene B, Condon D J, Morgan L, . Precision and Accuracy in Geochronology. Elements, 2013, 9(1): 19-24.
CrossRef Google scholar
Shimizu N, Hart S R. Applications of the Ion Microprobe to Geochemistry and Cosmochemistry. Annual Review of Earth and Planetary Sciences, 1982, 10(1): 483-526.
CrossRef Google scholar
Sláma J, Košler J, Condon D J, . Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 2008, 249(1/2): 1-35.
CrossRef Google scholar
Stacey J S, Kramers J D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 1975, 26(2): 207-221.
CrossRef Google scholar
Stern R A, Amelin Y. Assessment of Errors in SIMS Zircon U-Pb Geochronology Using a Natural Zircon Standard and NIST SRM 610 Glass. Chemical Geology, 2003, 197(1/2/3/4): 111-142.
CrossRef Google scholar
Tang H, Li Q L, Liu Y, . Erroneous Determination of the Duration of Metamorphism from Analysis of Overlapping Pre-Sputtered Areas during SIMS U-Pb Dating of Zircon. Chemical Geology, 2021, 573: 120177
CrossRef Google scholar
Vrána S. Perpotassic Granulites from Southern Bohemia. Contributions to Mineralogy and Petrology, 1989, 103(4): 510-522.
CrossRef Google scholar
White L T, Ireland T R. High-Uranium Matrix Effect in Zircon and Its Implications for SHRIMP U-Pb Age Determinations. Chemical Geology, 2012, 306/307 78-91.
CrossRef Google scholar
Whitehouse M J, Claesson S, Sunde T, . Ion Microprobe U-Pb Zircon Geochronology and Correlation of Archaean Gneisses from the Lewisian Complex of Gruinard Bay, Northwestern Scotland. Geochimica et Cosmochimica Acta, 1997, 61(20): 4429-4438.
CrossRef Google scholar
Wiedenbeck M, Allé P, Corfu F, . Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23.
CrossRef Google scholar
Wiedenbeck M, Hanchar J M, Peck W H, . Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 2004, 28(1): 9-39.
CrossRef Google scholar
Yang Y N, Li Q L, Liu Y, . Zircon U-Pb Dating by Secondary Ion Mass Spectrometry. Earth Science Frontiers, 2014, 21(2): 81-92
Zhao Y D, Che J Y, Xu F M, . Constraints on the Forming Age of the Luomahu Group in the Xing’an Block from the Detrital Zircon Population. Earth Science, 2020, 45(2): 489-502

Accesses

Citations

Detail

Sections
Recommended

/