Late Mesozoic Tectono-Thermal History in the South Margin of Great Xing’an Range, NE China: Insights from Zircon and Apatite (U-Th)/He Ages

Wen Zhang , Shuangfeng Zhao , Jingbo Sun , Ze Shen , Wen Chen

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 36 -44.

PDF
Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 36 -44. DOI: 10.1007/s12583-021-1537-5
Article

Late Mesozoic Tectono-Thermal History in the South Margin of Great Xing’an Range, NE China: Insights from Zircon and Apatite (U-Th)/He Ages

Author information +
History +
PDF

Abstract

The Late Mesozoic tectono-thermal evolution and geodynamic setting of the Great Xing’an Range (GXR), particularly in the south margin, are still ambiguous. In this study, we present original low-temperature thermochronological data of six granitoid samples collected from Maanzi pluton in the south margin of the GXR. The apatite and zircon (U-Th)/He ages vary of 70.8 ± 4.3–119.0 ± 7.0 Ma and 120.0 ± 7.1–146.7 ± 8.7 Ma, respectively. Further numerical inverse modeling results reveal that the granitoid plutons experienced a rapid cooling and exhumation stage during Early Cretaceous with a rate of ∼5.0–6.0 °C/Ma and ∼0.14–0.17 mm/yr, respectively, including the western minor pluton emplaced during Early Permian and the major pluton crystallized in latest Jurassic, corresponding to the extensional tectonics in NE China. The rapid exhumation processes in the south margin of the GXR during the Early Cretaceous could be related to both the rollback of Paleo-Pacific oceanic plate and the collapse of thickened crust in the Mongol-Okhotsk Orogen.

Keywords

Great Xing’an Range / tectono-thermal history / (U-Th)/He dating / extensional tectonics / Mongol-Okhotsk collapse / Paleo-Pacific subduction / geochemistry

Cite this article

Download citation ▾
Wen Zhang, Shuangfeng Zhao, Jingbo Sun, Ze Shen, Wen Chen. Late Mesozoic Tectono-Thermal History in the South Margin of Great Xing’an Range, NE China: Insights from Zircon and Apatite (U-Th)/He Ages. Journal of Earth Science, 2022, 33(1): 36-44 DOI:10.1007/s12583-021-1537-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Charles N, Gumiaux C, Augier R, . Metamorphic Core Complexes vs. Synkinematic Plutons in Continental Extension Setting: Insights from Key Structures (Shandong Province, Eastern China). Journal of Asian Earth Sciences, 2011, 40(1): 261-278.

[2]

Daoudene Y, Ruffet G, Cocherie A, . Timing of Exhumation of the Ereendavaa Metamorphic Core Complex (North-Eastern Mongolia)—U-Pb and 40Ar/39Ar Constraints. Journal of Asian Earth Sciences, 2013, 62: 98-116.

[3]

Farley K A. Helium Diffusion from Apatite: General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2903-2914.

[4]

Farley K A, Wolf R A, Silver L T. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 1996, 60(21): 4223-4229.

[5]

Flowers R M. Exploiting Radiation Damage Control on Apatite (U-Th)/He Dates in Cratonic Regions. Earth and Planetary Science Letters, 2009, 277(1/2): 148-155.

[6]

Flowers R M, Ketcham R A, Shuster D L, . Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model. Geochimica et Cosmochimica Acta, 2009, 73(8): 2347-2365.

[7]

Gillespie J, Glorie S, Xiao W J, . Mesozoic Reactivation of the Beishan, Southern Central Asian Orogenic Belt: Insights from Low-Temperature Thermochronology. Gondwana Research, 2017, 43: 107-122.

[8]

Guenthner W R, Reiners P W, Ketcham R A, . Helium Diffusion in Natural Zircon: Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology. American Journal of Science, 2013, 313(3): 145-198.

[9]

Jiang S H, Liang Q L, Liu Y F, . Zircon U-Pb Ages of the Magmatic Rocks Occurring in and around the Dajing Cu-Ag-Sn Polymetallic Deposit of Inner Mongolia and Constrains to the Ore-Forming Age. Acta Petrologica Sinica, 2012, 28(2): 495-513

[10]

Jiang Y, Jiang S H, Li S Z, . Paleozoic to Mesozoic Micro-Block Tectonics in the Eastern Central Asian Orogenic Belt: Insights from Magnetic and Gravity Anomalies. Gondwana Research, 2020

[11]

Ketcham R A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 275-314.

[12]

Li K, Jolivet M, Zhang Z C, . Long-Term Exhumation History of the Inner Mongolian Plateau Constrained by Apatite Fission Track Analysis. Tectonophysics, 2016, 666: 121-133.

[13]

Li S, Chung S L, Wang T, . Tectonic Significance and Geodynamic Processes of Large-Scale Early Cretaceous Granitoid Magmatic Events in the Southern Great Xing’an Range, North China. Tectonics, 2017, 36(4): 615-633.

[14]

Li X M, Yang X Y, Xia B, . Exhumation of the Dahinggan Mountains, NE China from the Late Mesozoic to the Cenozoic: New Evidence from Fission-Track Thermochronology. Journal of Asian Earth Sciences, 2011, 42(1/2): 123-133.

[15]

Lin W, Wang J, Liu F, . Late Mesozoic Extension Structures on the North China Craton and Adjacent Regions and Its Geodynamics. Acta Petrologica Sinica, 2013, 29(5): 1791-1810

[16]

Lin W, Wei W. Late Mesozoic Extensional Tectonics in the North China Craton and Its Adjacent Regions: a Review and Synthesis. International Geology Review, 2018, 62(7/8): 811-839

[17]

Liu B R, Li W, Jia J, . Extensional Detachment Structure in Galashan, Northern Great Xing’ an Ranges, NE China. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1142-1152

[18]

Liu K, Zhang J J, Wilde S A, . Initial Subduction of the Paleo-Pacific Oceanic Plate in NE China: Constraints from Whole-Rock Geochemistry and Zircon U-Pb and Lu-Hf Isotopes of the Khanka Lake Granitoids. Lithos, 2017, 274/275: 254-270.

[19]

Liu W, Pan X F, Xie LW, . Sources of Material for the Linxi Granitoids, the Southern Segment of the Da Hinggan MRS.: When and How Continental Crust Grew?. Acta Petrologica Sinica, 2007, 23(2): 441-460

[20]

Liu Y J, Li W M, Feng Z Q, . A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 2017, 43: 123-148.

[21]

Ma Q, Xu Y G. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 2021, 213: 103473

[22]

Pang Y M, Guo X W, Zhang X H, . Late Mesozoic and Cenozoic Tectono-Thermal History and Geodynamic Implications of the Great Xing’an Range, NE China. Journal of Asian Earth Sciences, 2020, 189 104155

[23]

Reiners P W, Brandon M T. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 419-466.

[24]

Reiners P W, Farley K A. Influence of Crystal Size on Apatite (U-Th)/He Thermochronology: An Example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 2001, 188(3/4): 413-420.

[25]

Reiners P W, Spell T L, Nicolescu S, . Zircon (U-Th)/He Thermochronometry: He Diffusion and Comparisons with 40Ar/39Ar Dating. Geochimica et Cosmochimica Acta, 2004, 68(8): 1857-1887.

[26]

Ren J Y, Tamaki K, Li S T, . Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 2002, 344(3/4): 175-205.

[27]

Safonova I Y, Utsunomiya A, Kojima S, . Pacific Superplume-Related Oceanic Basalts Hosted by Accretionary Complexes of Central Asia, Russian Far East and Japan. Gondwana Research, 2009, 16(3/4): 587-608.

[28]

Shuster D L, Flowers R M, Farley K A. The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 2006, 249(3/4): 148-161.

[29]

Sun J B, Chen W, Yu S, . Study on Ziron (U-Th)/He Dating Technique. Acta Petrologica Sinica, 2017, 33(6): 1947-1956

[30]

Sun J B, Sun T F, Chen W, . Thermo-Tectonic Evolution History of Hongyuntan Area, Eastern Tianshan, Xinjiang: Constrained from Ar-Ar and (U-Th)/He Dating. Acta Petrologica Sinica, 2015, 31(12): 3732-3742

[31]

Tang J, Xu W L, Wang F, . Geochronology, Geochemistry, and Deformation History of Late Jurassic-Early Cretaceous Intrusive Rocks in the Erguna Massif, NE China: Constraints on the Late Mesozoic Tectonic Evolution of the Mongol-Okhotsk Orogenic Belt. Tectonophysics, 2015, 658 91-110.

[32]

Tang J, Xu W L, Wang F, . Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia. Science China Earth Sciences, 2018, 61: 527-559.

[33]

van der Voo, R., van Hinsbergen, D. J. J., Domeier, M., et al., 2015. Latest Jurassic-Earliest Cretaceous Closure of the Mongol-Okhotsk Ocean: A Paleomagnetic and Seismological-Tomographic Analysis. The Geological Society of America Special Papers. Geological Society of America, 589–606. https://doi.org/10.1130/2015.2513(19)

[34]

Wang F, Zhou X H, Zhang L C, . Late Mesozoic Volcanism in the Great Xing’ an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 2006, 251(1/2): 179-198.

[35]

Wang T, Guo L, Zhang L, . Timing and Evolution of Jurassic-Cretaceous Granitoid Magmatisms in the Mongol-Okhotsk Belt and Adjacent Areas, NE Asia: Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings. Journal of Asian Earth Sciences, 2015, 97: 365-392.

[36]

Wang S Y, Cheng Y H, Zeng L, . Thermal Imprints of Cenozoic Tectonic Evolution in the Songliao Basin, NE China: Evidence from Apatite Fission-Track (AFT) of CCSD-SK1 Borehole. Journal of Asian Earth Sciences, 2020, 195: 104353

[37]

Wang Z H, Ge W C, Yang H, . Middle Jurassic Oceanic Island Igneous Rocks of the Raohe Accretionary Complex, Northeastern China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 2015, 111 120-137.

[38]

Weisberg W R, Metcalf J R, Flowers R M. Distinguishing Slow Cooling Versus Multiphase Cooling and Heating in Zircon and Apatite (U-Th)/He Datasets: The Case of the McClure Mountain Syenite Standard. Chemical Geology, 2018, 485: 90-99.

[39]

Windley B F, Alexeiev D, Xiao W J, . Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 2007, 164(1): 31-47.

[40]

Wolf R A, Farley K A, Silver L T. Helium Diffusion and Low-Temperature Thermochronometry of Apatite. Geochimica et Cosmochimica Acta, 1996, 60(21): 4231-4240.

[41]

Wu F Y, Lin J Q, Wilde S A, . Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 2005, 233(1/2): 103-119.

[42]

Wu F Y, Sun D Y, Ge W C, . Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.

[43]

Wu H H, Hu D G, Wu X W, . Mesozoic-Cenozoic Uplift and Denudation of Northern Da Hinggan Mountains: Evidence from Apatite Fission Track Data. Geological Bulletin of China, 2016, 35(12): 2058-2062

[44]

Xiao W J, Windley B F, Allen M B, . Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 2013, 23(4): 1316-1341.

[45]

Yang Q, Shi W, Hou G T. Late Mesozoic Extensional Detachment Structures in Eastern China and Adjacent Areas: Overview and New Insight. Acta Geoscientica Sinica, 2019, 40(4): 511-544

[46]

Yang X P, Jiang B, Yang Y J. Spatial-Temporal Distribution Characteristics of Early Cretaceous Volcanic Rocks in Great Xing’an Range Area. Earth Science, 2019, 44(10): 3237-3251

[47]

Yang Y T, Guo Z X, Song C C, . A Short-Lived but Significant Mongol-Okhotsk Collisional Orogeny in Latest Jurassic-Earliest Cretaceous. Gondwana Research, 2015, 28(3): 1096-1116.

[48]

Zhang J H, Ge W C, Wu F Y, . Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing’an Range, Northeastern China. Lithos, 2008, 102(1/2): 138-157.

[49]

Zhao H, Li S, Wang T, . Age, Petrogenesis and Tectonic Implications of the Early Cretaceous Magmatism in the Huanggangliang Area, Southern Da Hinggan Mountains. Geological Bulletin of China, 2015, 34(12): 2203-2218

[50]

Zhou J B, Cao J L, Wilde S A, . Paleo-Pacific Subduction-Accretion: Evidence from Geochemical and U-Pb Zircon Dating of the Nadanhada Accretionary Complex, NE China. Tectonics, 2014, 33(12): 2444-2466.

[51]

Zhu R X, Xu Y G. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China Earth Sciences, 2019, 62: 1340-1350.

[52]

Zorin Y A. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics, 1999, 306(1): 33-56.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/