Shoshonitic Magmatic Series and the High Ba-Sr Granitoids: A Review with Emphasis on Examples from the Neoproterozoic Dom Feliciano Belt of Southern Brazil and Uruguay

Lauro Valentim Stoll Nardi , Maria de Fátima Bitencourt , Luana Moreira Florisbal , Dionatan Ferri Padilha

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (6) : 1359 -1373.

PDF
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (6) : 1359 -1373. DOI: 10.1007/s12583-021-1534-8
Article

Shoshonitic Magmatic Series and the High Ba-Sr Granitoids: A Review with Emphasis on Examples from the Neoproterozoic Dom Feliciano Belt of Southern Brazil and Uruguay

Author information +
History +
PDF

Abstract

Fractional crystallization of parental magmas of shoshonitic or silica-saturated, ultrapotassic affinity, with variable amount of concurrent crustal assimilation, may result in granitic and syenitic rocks. Typical plutonic members of the shoshonitic series are monzonites and quartz monzonites, whilst syenites and quartz syenites are the dominant plutonic products of the ultrapotassic series. Lamprophyric magmas are commonly found in association with both series and are frequently part of coeval mingling/mixing systems. Ultrapotassic and shoshonitic primary magmas, including lamprophyric ones, are derived from amphibole-phlogopite-bearing mantle sources produced by previous, subduction-related metasomatism. Acidic and intermediate rocks can be derived from such parental magmas, generally through AFC processes. Shoshonitic-like granitoids, which have not clear relation with intermediate or basic shoshonitic rocks, or are produced dominantly by crustal melting, should be named high-Ba-Sr granitoids. This study focuses mainly on Neoproterozoic shoshonitic and silica-saturated ultrapotassic rock associations formed in post-collisional settings from southern Brazil and Uruguay. The source of magmas, their evolution, the role played by crustal contamination in modifying pristine geochemical signatures and their tectonic control are discussed based on elemental and Sr-Nd isotope geochemistry. The main features of plutonic rocks related to the shoshonitic series are their potassic, silica-saturated alkaline character, predominance of monzonitic to syenitic compositions, high Sr and Ba contents, monotonous, light REE-enriched patterns, and moderate HFSE contents. Syntectonic shoshonitic and high Ba-Sr granitoids within shear zones show lower alkali, LREE, HFSE, and Sr contents than those formed away from the main deformation sites. Plutonic rocks related to the extended silica-saturated ultrapotassic series are mostly syenites, alkali-feldspar granites and lamprophyres with K2O/Na2O ratios above 2. The typical values of 87Sr/86Sri for shoshonitic plutonic rocks are 0.706–0.708, ranging from 0.704 to 0.710. The ε Nd(t) values are negative and vary from 0 to −24. Crustal contribution tends to increase 87Sr/86Sri and decrease ε Nd(t) values, depending on protolith isotope signature, melting conditions and volume of assimilated material. Ultrapotassic rocks, on the other hand, show higher 87Sr/86Sri ratios, from 0.709–0.711 up to 0.720. Geochemical evidence, including Sr-Nd isotope data, indicates that the shoshonitic and ultrapotassic rocks discussed in this study were formed from OIB-like sources with strong influence of previous subduction, probably a phlogopite, K-amphibole bearing veined mantle. Lithological variability in ultrapotassic-shoshonitic associations is interpreted to result from (i) variation of source composition, (ii) different melt fractions from similar sources, (iii) mixing-mingling, fractional crystallization, and assimilation processes.

Keywords

shoshonitic-like rocks / post-collisional magmatism / K-rich granitoids

Cite this article

Download citation ▾
Lauro Valentim Stoll Nardi, Maria de Fátima Bitencourt, Luana Moreira Florisbal, Dionatan Ferri Padilha. Shoshonitic Magmatic Series and the High Ba-Sr Granitoids: A Review with Emphasis on Examples from the Neoproterozoic Dom Feliciano Belt of Southern Brazil and Uruguay. Journal of Earth Science, 2021, 32(6): 1359-1373 DOI:10.1007/s12583-021-1534-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arndt N T. Formation and Evolution of the Continental Crust. Geochemical Perspectives, 2013, 2(3): 405-533.

[2]

Avanzinelli R, Lustrino M, Mattei M, . Potassic and Ultrapotassic Magmatism in the Circum-Tyrrhenian Region: Significance of Carbonated Pelitic vs. Pelitic Sediment Recycling at Destructive Plate Margins. Lithos, 2009, 113(1/2): 213-227.

[3]

Bachmann O, Miller C F, Silva S L. The Volcanic-Plutonic Connection as a Stage for Understanding Crustal Magmatism. Journal of Volcanology and Geothermal Research, 2007, 167(1/2/3/4): 1-23.

[4]

Barbarin B. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 1999, 46(3): 605-626.

[5]

Barros C E, Nardi L V S. O Maciço Granítico Santo Antônio, RS: Magmatismo Neoproterozóico de Afinidade Shoshonítica. Anais da Academia Brasileira de Ciências, 1994, 66(4): 441-465

[6]

Bell K, Lavecchia G, Rosatelli G. Cenozoic Italian Magmatism: Isotope Constraints for Possible Plume-Related Activity. Journal of South American Earth Sciences, 2013, 41: 22-40.

[7]

Bitencourt M F, Nardi L V S. Late- to Post-Collisional Brasiliano Magmatism in Southernmost Brazil. Anais da Academia Brasileira de Ciências, 1993, 65(Suppl.1): 13-16

[8]

Bitencourt M F, Nardi L V S. The Role of Xenoliths and Flow Segregation in the Genesis and Evolution of the Paleoproterozoic Itapema Granite, a Crustally Derived Magma of Shoshonitic Affinity from Southern Brazil. Lithos, 2004, 73(1/2): 1-19.

[9]

Bonin B. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 2007, 97(1/2): 1-29.

[10]

Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, 1984, Amsterdam: Elsevier, 63-114.

[11]

Campos T F, Neiva A M, Nardi L V S. Geochemistry of the Hybrid Complex and Their Minerals from Rio Espinharas Pluton, Northeastern Brazil. Lithos, 2002, 64(3/4): 131-153.

[12]

Carroll M R, Wyllie P J. The System Tonalite-H2O at 15 kbar and the Genesis of Calc-Alkaline Magmas. American Mineralogist, 1990, 75(3): 345-357

[13]

Carvalho B B, Janasi V D A, Henrique-Pinto R. Geochemical and Sr-Nd-Pb Isotope Constraints on the Petrogenesis of the K-Rich Pedra Branca Syenite: Implications for the Neoproterozoic Post-Collisional Magmatism in SE Brazil. Lithos, 2014, 205: 39-59.

[14]

Chemale F Jr., Mallmann G, Bitencourt M D F, . Time Constraints on Magmatism along the Major Gercino Shear Zone, Southern Brazil: Implications for West Gondwana Reconstruction. Gondwana Research, 2012, 22(1): 184-199.

[15]

Civetta L, Innocenti F, Manetti P, . Geochemical Characteristics of Potassic Volcanics from Mts. Ernici (Southern Latium, Italy). Contributions to Mineralogy and Petrology, 1981, 78(1): 37-47.

[16]

Conceição R V, Green D H. Derivation of Potassic (Shoshonitic) Magmas by Decompression Melting of Phlogopite+Pargasite Lherzolite. Lithos, 2004, 72(3/4): 209-229.

[17]

Conceição R V, Green D H. Behavior of the Cotectic Curve En-Ol in the System Leucite-Olivine-Quartz under Dry Conditions to 2.0 GPa. Geochemistry, Geophysics, Geosystems, 2000, 1(11): 200GC000071

[18]

Conceição R V, Nardi L V S, Conceição H. The Santanápolis Syenite: Genesis and Evolution of Paleoproterozoic Shoshonitic Syenites in Northeastern Brazil. International Geology Review, 2000, 42 10 941-957.

[19]

Condie K C. Changing Tectonic Settings through Time: Indiscriminate Use of Geochemical Discriminant Diagrams. Precambrian Research, 2015, 266: 587-591.

[20]

Conticelli S, Guarnieri L, Farinelli A, . Trace Elements and Sr-Nd-Pb Isotopes of K-Rich, Shoshonitic, and Calc-Alkaline Magmatism of the Western Mediterranean Region: Genesis of Ultrapotassic to Calc-Alkaline Magmatic Associations in a Post-Collisional Geodynamic Setting. Lithos, 2009, 107(1/2): 68-92.

[21]

Cvetkovic V, Prelevic D, Downes H, . Origin and Geodynamic Significance of Tertiary Postcollisional Basaltic Magmatism in Serbia (Central Balkan Peninsula). Lithos, 2004, 73(3/4): 161-186.

[22]

Duchesne J C, Berza T, Liégeois J P, . Shoshonitic Liquid Line of Descent from Diorite to Granite: The Late Precambrian Post-Collisional Tismana Pluton (South Carpathians, Romania). Lithos, 1998, 45(1/2/3/4): 281-303.

[23]

Eklund O, Konopelko D, Rutanen H, . 1.8 Ga Svecofennian Post-Collisional Shoshonitic Magmatism in the Fennoscandian Shield. Lithos, 1998, 45(1/2/3/4): 87-108.

[24]

Eklund O, Shebanov A. Prolonged Postcollisional Shoshonitic Magmatism in the Southern Svecofennian Domain—A Case Study of the Åva Granite-Lamprophyre Ring Complex. Lithos, 2005, 80(1/2/3/4): 229-247.

[25]

Ferreira V P, Sial A N. Mica Pyroxenite as Probable Source of Ultrapotassic and Potassic Magmas in Northeastern Brazil. Anais da Academia Brasileira de Ciências, 1993, 65(1): 51-61.

[26]

Ferreira V P, Sial A N, Long L E, . Isotopic Signatures of Neoproterozoic to Cambrian Ultrapotassic Syenitic Magmas, Northeastern Brazil: Evidence for an Enriched Mantle Source. International Geology Review, 1997, 39(7): 660-669.

[27]

Ferreira V P, Sial A N, Pimentel M M, . Reworked Old Crust-Derived Shoshonitic Magma: The Guarany Pluton, Northeastern Brazil. Lithos, 2015, 232: 150-161.

[28]

Fontana E, Mexias A S, Renac C, . Hydrothermal Alteration of Volcanic Rocks in Seival Mine Cu-Mineralization—Camaquã Basin—Brazil (Part I): Chloritization Process and Geochemical Dispersion in Alteration Halos. Journal of Geochemical Exploration, 2017, 177: 45-60.

[29]

Fontes M P, Conceição H, Silva Rosa M L, . Minettes do Stock Monzonítico Glória Norte: Evidência de Magmatismo Ultrapotássico Pós-Orogênico, Com Assinatura de Subducção, no Sistema Orogênico Sergipano. Geologia USP Série Científica, 2018, 18(1): 51-66.

[30]

Fowler M B, Kocks H, Darbyshire D P F, . Petrogenesis of High Ba-Sr Plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos, 2008, 105(1/2): 129-148.

[31]

Gardien V, Thompson A B, Ulmer P. Melting of Biotite+Plagioclase+Quartz Gneisses: The Role of H2O in the Stability of Amphibole. Journal of Petrology, 2000, 41(5): 651-666.

[32]

Gastal M C P, Lafon J M, Hartmann L A, . Sm-Nd Isotopic Investigation of Neoproterozoic and Cretaceous Igneous Rocks from Southern Brazil: A Study of Magmatic Processes. Lithos, 2005, 82(3/4): 345-377.

[33]

Gastal M C P, Lafon J M. Reinterpretação do Complexo Intrusivo Lavras do Sul, Rs, de Acordo Com Os Sistemas vulcano-Plutônicos de Subsidênsia. Parte 2: Química Mineral, Geoquímica e Isótopos de Pb-Sr-Nd. Revista Brasileira de Geociências, 2006, 36(1): 125-146.

[34]

Gastal M C P, Ferreira F J F, Cunha J U D, . Alojamento do Granito Lavras e a Mineralização Aurífera Durante Evolução de Centro Vulcano-Plutônico Pós-Colisional, Oeste do Escudo Sul-Riograndense: Dados Geofísicos e Estruturais. Brazilian Journal of Geology, 2015, 45(2): 217-241.

[35]

Gill J B. Geochemistry of Viti Levu, Fiji, and Its Evolution as an Island Arc. Contributions to Mineralogy and Petrology, 1970, 27(3): 179-203.

[36]

Goswami B, Bhattacharyya C. Petrogenesis of Shoshonitic Granitoids, Eastern India: Implications for the Late Grenvillian Post-Collisional Magmatism. Geoscience Frontiers, 2014, 5(6): 821-843.

[37]

Guimarães I P, Silva Filho A F. Evolução Petrológica e Geoquímica do Complexo Bom Jardim, Pernambuco. Revista Brasileira de Geociências, 1992, 22(1): 29-42.

[38]

Guimarães I D P, Silva Filho A F. Nd and Sr-Isotopic and U-Pb Geochronologic Constraints for Evolution of the Shoshonitic Brasiliano Bom Jardim and Toritama Complexes: Evidence for a Transamazonian Enriched Mantle under Borborema Tectonic Province, Brazil. International Geology Review, 1998, 40(6): 500-527.

[39]

Guo Z F, Wilson M, Liu J Q, . Post-Collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau: Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms. Journal of Petrology, 2006, 47(6): 1177-1220.

[40]

Hegner E, Kölbl-Ebert M, Loeschke J. Post-Collisional Variscan Lamprophyres (Black Forest, Germany): 40Ar/39Ar Phlogopite Dating, Nd, Pb, Sr Isotope, and Trace Element Characteristics. Lithos, 1998, 45(1/2/3/4): 395-411.

[41]

Ilbeyli N, Pearce J A, Thirlwall M F, . Petrogenesis of Collision-Related Plutonics in Central Anatolia, Turkey. Lithos, 2004, 72(3/4): 163-182.

[42]

Jakeš P, White A J R. Major and Trace Element Abundances in Volcanic Rocks of Orogenic Areas. Geological Society of America Bulletin, 1972, 83(1): 29-40.

[43]

Janasi V A, Vlach S R F, Ulbrich H H G J. Enriched Mantle Contributions to the Itu Granitoid Belt, Southeastern Brazil: Evidence from K-Rich Diorites and Syenites. Anais da Academia Brasileira de Ciências, 1993, 65: 107-118.

[44]

Jiang Y H, Jiang S Y, Ling H F, . Petrology and Geochemistry of Shoshonitic Plutons from the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China: Implications for Granitoid Geneses. Lithos, 2002, 63(3/4): 165-187.

[45]

Joplin G A. The Shoshonite Association: A Review. Journal of the Geological Society of Australia, 1968, 15(2): 275-294.

[46]

Knijnik D, Bitencourt M F, Nardi L V S, . Caracterização Geoquímica e Estrutural do Granodiorito Cruzeiro do Sul: Magmatismo Shoshonítico Pós-Colisional Neoproterozoico em Zona de Transcorrência, Região de Quitéria, RS. Geologia USP Série Científica, 2012, 12(1): 17-38.

[47]

Knijnik D B. Geocronologia U-Pb e Geoquímica Isotópica Sr-Nd dos Granitoides Sintectônicos \`as Zonas de Cisalhamento Transcorrentes Quitéria Serra do Erval e Dorsal do Canguçu, Rio Grande do Sul, Brasil, 2018, Porto Alegre: Universidade Federal do Rio Grande do Sul, 260

[48]

Köksal S, Romer R L, Göncüoglu M C, . Timing of Post-Collisional H-Type to A-Type Granitic Magmatism: U-Pb Titanite Ages from the Alpine Central Anatolian Granitoids (Turkey). International Journal of Earth Sciences, 2004, 93(6): 974-989.

[49]

Lameyre J, Bowden P. Plutonic Rock Types Series: Discrimination of Various Granitoid Series and Related Rocks. Journal of Volcanology and Geothermal Research, 1982, 14(1/2): 169-186.

[50]

Lara P, Oyhantçabal P, Dadd K. Post-Collisional, Late Neoproterozoic, High-Ba-Sr Granitic Magmatism from the Dom Feliciano Belt and Its Cratonic Foreland, Uruguay: Petrography, Geochemistry, Geochronology, and Tectonic Implications. Lithos, 2017, 277: 178-198.

[51]

Le Maitre R W. A Classification of Igneous Rocks and Glossary of Terms, 2002, Cambridge: Cambridge University Press, 236

[52]

Leat P T, Thompson R N, Morrison M A, . Silicic Magmas Derived by Fractional Crystallization from Miocene Minette, Elkhead Mountains, Colorado. Mineralogical Magazine, 1988, 52(368): 577-585.

[53]

Lima E F, Nardi L V S. Os Lamprófiros Espessartíticos da Associação Shoshonítica de Lavras do Sul, RS. Geochimica Brasiliensis, 1991, V(1/2): 117-131

[54]

Lima E F, Nardi L V S. Química Mineral Das Rochas Vulcânicas e Lamprófiros Espessartíticos da Associação Shoshonítica de Lavras do Sul-RS. Revista Brasileira de Geociências, 1998, 28(2): 113-124.

[55]

Lisboa V A, Conceição H, Silva Rosa M L, . The Onset of Post-Collisional Magmatism in the Macururé Domain, Sergipano Orogenic System: The Glória Norte Stock. Journal of South American Earth Sciences, 2019, 89: 173-188.

[56]

Litvinovsky B A, Jahn B M, Zanvilevich A N, . Crystal Fractionation in the Petrogenesis of an Alkali Monzodiorite-Syenite Series: The Oshurkovo Plutonic Sheeted Complex, Transbaikalia, Russia. Lithos, 2002, 64(3/4): 97-130.

[57]

Liz J D, Lima E F, Nardi L V S, . Aspectos Petrográficos, Composicionais e Potencialidade para Mineralizações de ouro e Sulfetos do Sistema Multi-Intrusivo da Associação Shoshonítica de Lavras do Sul (RS). Revista Brasileira de Geociências, 2004, 34(4): 539-552.

[58]

Liz J D, Lima E F, Nardi L V S. Avaliação de Fontes Magmáticas de Séries Shoshoníticas Pós-Colisionais Com Base Na Normalização Pela Associação Shoshonítica de Lavras do Sul—Aplicação de Sliding Normalization. Revista Brasileira de Geociências, 2009, 39(1): 55-66.

[59]

Lopes R W, Fontana E, Mexias A S, . Caracterização Petrográfica e Geoquímica da Sequência Magmática da Mina do Seival, Formação Hilário (Bacia do Camaquã-Neoproterozoico), Rio Grande do Sul, Brasil. Pesquisas em Geociências, 2014, 41(1): 39-51.

[60]

López-Plaza M, López-Moro F J, Gonzalo-Corral J C, . Asociaciones de Rocas Bpasicas e Inter-Médias de Afinidad Calcoalcalina y Shoshonítica y Granitóides Relacionados em al Domo Hercínicodel Tormes (Salamanca y Zamora). Boletin de la Sociedad Española de Mineralogia, 1999, 22: 211-234.

[61]

López-Moro F J, López-Plaza M. Monzonitic Series from the Variscan Tormes Dome (Central Iberian Zone): Petrogenetic Evolution from Monzogabbro to Granite Magmas. Lithos, 2004, 72(1/2): 19-44.

[62]

Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids. Geological Society of American Bulletin, 1989, 101(5): 635-643.

[63]

Maria A H, Luhr J F. Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship. Journal of Petrology, 2008, 49(12): 2123-2156.

[64]

Martini A, Bitencourt M F, Weinberg R F, . From Migmatite to Magma—Crustal Melting and Generation of Granite in the Camboriú Complex, South Brazil. Lithos, 2019, 340/341: 270-286.

[65]

Martins G G, Mendes J C, Schmitt R S, . 550–490 Ma Preto Post-Collisional Shoshonitic Rocks in the Ribeira Belt (SE Brazil) and Their Tectonic Significance. Precambrian Research, 2016, 286: 352-369.

[66]

Melzer S, Foley S F. Fractionation Sequences in Potassic Magma Series Modelled in the System CaMgSi2O6-KAlSiO4-Mg2SiO4-SiO2-F2O−1 at 1 bar to 18 kbar. Contributions to Mineralogy and Petrology, 2000, 138(2): 186-197.

[67]

Mexias A S, Berger G, Gomes M E, . Geochemical Modeling of Gold Precipitation Conditions in the Bloco do Butiá Mine, Lavras do Sul/Brazil. Anais da Academia Brasileira de Ciencias, 2005, 77(4): 717-728.

[68]

Miller C, Schuster R, Klotzli U, . Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 1999, 40(9): 1399-1424.

[69]

Montel J M, Vielzeuf D. Partial Melting of Metagreywackes, Part II. Compositions of Minerals and Melts. Contributions to Mineralogy and Petrology, 1997, 128(2): 176-196.

[70]

Morrison G W. Characteristics and Tectonic Setting of the Shoshonite Rock Association. Lithos, 1980, 13(1): 97-108.

[71]

Müller D, Groves D I. Direct and Indirect Associations between Potassic Igneous Rocks, Shoshonites and Gold-Copper Deposits. Ore Geology Reviews, 1993, 8(5): 383-406.

[72]

Müller I F, Nardi L V S, Lima E F, . Os Diques Latíticos Portadores de Ouro e Sulfetos da Associação Shoshonítica de Lavras do Sul-RS: Petrogênese e Geoquímica. Pesquisas em Geociências, 2012, 39(2): 173-191.

[73]

Nardi L V S. Geochemistry and Petrology of the Lavras Granite Complex, R.S., Brazil, 1984, London: London University, 268

[74]

Nardi L V S. As Rochas Granitóides da Série Shoshonítica. Revista Brasileira de Geociências, 1986, 16(1): 3-10.

[75]

Nardi L V S, Lima E F. A Associação Shoshonítica de Lavras do Sul, RS. Revista Brasileira de Geociências, 1985, 15(2): 139-146.

[76]

Nardi L V S, Lima E F. Hidrotermalismo no Complexo Granítico Lavras e Vulcânicas Associadas, RS. Revista Brasileira de Geociências, 1988, 18(3): 369-375.

[77]

Nardi L V S, Lima E F. Hybridisation of Mafic Microgranular Enclaves in the Lavras Granite Complex, Southern Brazil. Journal of South American Earth Sciences, 2000, 13(1/2): 67-78.

[78]

Nardi L V S. Granitoides e Séries Magmáticas: O Estudo Contextualizado dos Granitoides. Pesquisas em Geociências, 2016, 43(1): 85

[79]

Nardi L V S, Plá Cid J, Bitencourt M F. Minette Mafic Microgranular Enclaves and Their Relationship to Host Syenites in Systems Formed at Mantle Pressures: Major and Trace Element Evidence from the Piquiri Syenite Massif, Southernmost Brazil. Mineralogy and Petrology, 2007, 91 1/2 101-116.

[80]

Nardi L V S, Plá Cid J, Bitencourt M F, . Geochemistry and Petrogenesis of Post-Collisional Ultrapotassic Syenites and Granites from Southernmost Brazil: The Piquiri Syenite Massif. Anais da Academia Brasileira de Ciencias, 2008, 80(2): 353-371.

[81]

Nascimento A L, Antunes A F, Galindo A C, . Geochemical Signature of the Brasilianoage Plutonism in the Seridó Belt, Northeastern Borborema Province (NE Brazil). Revista Brasileira de Geociências, 2000, 30(1): 161-164.

[82]

Oyhantçabal P, Wagner-Eimer M, Wemmer K, . Paleo- and Neoproterozoic Magmatic and Tectonometamorphic Evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay). International Journal of Earth Sciences, 2012, 101(7): 1745-1762.

[83]

Padilha D F, Bitencourt M F, Nardi L V S, . Sources and Settings of Ediacaran Post-Collisional Syenite-Monzonite-Diorite Shoshonitic Magmatism from Southernmost Brazil. Lithos, 2019, 344/345: 482-503.

[84]

Pagel M, Leterrier J. The Subalkaline Potassic Magmatism of the Ballons Massif (Southern Vosges, France): Shoshonitic Affinity. Lithos, 1980, 13(1): 1-10.

[85]

Paim M M, Plá Cid J, Rosa M L S, . Mineralogy of Lamprophyres and Mafic Enclaves Associated with the Paleoproterozoic Cara Suja Syenite, Northeast Brazil. International Geology Review, 2002, 44(11): 1017-1036.

[86]

Patiño Douce A E. What do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?. Geological Society, London, Special Publications, 1999, 168(1): 55-75.

[87]

Pearce J A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 2008, 100(1/2/3/4): 14-48.

[88]

Peccerillo A. Potassic and Ultrapotassic Rocks: Compositional Characteristics, Petrogenesis, and Geologic Significance. Episodes, 1992, 15(4): 243-251.

[89]

Peruchi F M, Florisbal L M, Bitencourt M F, . Time Constraints, Sources and Settings of the Neoproterozoic Post-Collisional Shoshonitic Magmatism in the Dom Feliciano Belt: A Case Study of the Estaleiro Granitic Complex, South Brazil. Lithos, 2021

[90]

Plá Cid J, Nardi L V S, Conceição H, . The Alkaline Silica-Saturated Ultrapotassic Magmatism of the Riacho do Pontal Fold Belt, NE Brazil: An Example of Syenite-Granite Neoproterozoic Association. Journal of South American Earth Sciences, 2000, 13(7): 661-683.

[91]

Plá Cid J, Nardi L V S, Stabel L Z, . High-Pressure Minerals in Mafic Microgranular Enclaves: Evidences for Co-Mingling between Lamprophyric and Syenitic Magmas at Mantle Conditions. Contributions to Mineralogy and Petrology, 2003, 145(4): 444-459.

[92]

Plá Cid J, Nardi L V S. Alkaline Ultrapotassic A-Type Granites Derived from Ultrapotassic Syenite Magmas Generated from Metasomatized Mantle. International Geology Review, 2006, 48(10): 942-956.

[93]

Plá Cid J, Campos C S, Nardi L V S, . Petrology of Gameleira Potassic Lamprophyres, São Francisco Craton. Anais da Academia Brasileira de Ciências, 2012, 84(2): 377-398.

[94]

Prelevic D, Akal C, Foley S F, . Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-Collisional Dynamics of Orogenic Lithospheric Mantle: The Case of Southwestern Anatolia, Turkey. Journal of Petrology, 2012, 53(5): 1019-1055.

[95]

Remus M V D, McNaughton N J, Hartmann L A, . U-Pb SHRIMP Zircon Dating and Nd Isotope Data of Granitoids of the São Gabriel Block, Southern Brazil: Evidence for an Archaean/Paleoproterozoic Basement, 1997 271-272

[96]

Remus M V D, Hartmann L A, McNaughton N J, . Distal Magmatic-Hydrothermal Origin for the Camaquã Cu (Au-Ag) and Santa Maria Pb, Zn (Cu-Ag) Deposits, Southern Brazil. Gondwana Research, 2000, 3(2): 155-174.

[97]

Richards J P, Spell T, Rameh E, . High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu±Mo±Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 2012, 107(2): 295-332.

[98]

Rios D C, Conceição H, Davis D W, . Paleoproterozoic Potassic-Ultrapotassic Magmatism: Morro do Afonso Syenite Pluton, Bahia, Brazil. Precambrian Research, 2007, 154(1/2): 1-30.

[99]

Rivera C B. Construção do Maciço Sienítico Piquiri (609 a 583 Ma) por Colocação Sucessiva de Pulsos de Magma Ultrapotássico e Shoshonítico sob Extensão no Escudo Sul-rio-Grandense, 2019, Porto Alegre: Universidade Federal do Rio Grande do Sul, 219

[100]

Rivera C B, Bittencourt M F, Nardi L V S. Integração de Parâmetros Físicos do Magma e Composição Química Dos Minerais Na Petrogênese do Granito Itapema, SC. Revista Brasileira de Geociências, 2004, 34(3): 361-372.

[101]

Rogers N W. Potassic Magmatism as a Key to Trace-Element Enrichment Processes in the Upper Mantle. Journal of Volcanology and Geothermal Research, 1992, 50(1/2): 85-99.

[102]

Sawyer E W, Cesare B, Brown M. When the Continental Crust Melts. Elements, 2011, 7(4): 229-234.

[103]

Schaltegger U. Magma Pulses in the Central Variscan Belt: Episodic Melt Generation and Emplacement during Lithospheric Thinning. Terra Nova, 1997, 9(5/6): 242-245.

[104]

Schmitt R S, Trouw R A J, van Schmus W R, . Late Amalgamation in the Central Part of West Gondwana: New Geochronological Data and the Characterization of a Cambrian Collisional Orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, 2004, 133(1/2): 29-61.

[105]

Silva Filho A F, Guimaraes I P, Thompson R N. Shoshonitic and Ultrapotassic Proterozoic Intrusive Suites in the Cachoeirinha-Salgueiro Belt, NE Brazil: A Transition from Collisional to Post-Collisional Magmatism. Precambrian Research, 1993, 62(3): 323-342.

[106]

Skjerlie K P, Johnston A D. Vapour-Absent Melting from 10 to 20 kbar of Crustal Rocks that Contain Multiple Hydrous Phases: Implications for Anatexis in the Deep to very Deep Continental Crust and Active Continental Margins. Journal of Petrology, 1996, 37(3): 661-691.

[107]

Sommer C A, Lima E F, Nardi L V S, . Potassic and Low- and High-Ti Mildly Alkaline Volcanism in the Neoproterozoic Ramada Plateau, Southernmost Brazil. Journal of South American Earth Sciences, 2005, 18(3/4): 237-254.

[108]

Sommer C A, Lima E F, Nardi L V, . The Evolution of Neoproterozoic Magmatism in Southernmost Brazil: Shoshonitic, High-K Tholeiitic and Silica-Saturated, Sodic Alkaline Volcanism in Post-Collisional Basins. Anais da Academia Brasileira de Ciencias, 2006, 78(3): 573-589.

[109]

Springer W, Seck H A. Partial Fusion of Basic Granulites at 5 to 15 kbar: Implications for the Origin of TTG Magmas. Contributions to Mineralogy and Petrology, 1997, 127(1/2): 30-45.

[110]

Stabel L Z, Nardi L V S, Plá Cid J. Química Mineral e Evolução Petrológica do Sienito Piquiri: Magmatismo Shoshonítico, Neoproterozóico, Pós-Colisional no Sul do Brasil. Revista Brasileira de Geociências, 2001, 31(2): 211-222.

[111]

Stevens G, Clemens J D, Droop G T R. Melt Production during Granulite-Facies Anatexis: Experimental Data from “Primitive” Metasedimentary Protoliths. Contributions to Mineralogy and Petrology, 1997, 128(4): 352-370.

[112]

Stoppa F, Rukhlov A S, Bell K, . Lamprophyres of Italy: Early Cretaceous Alkaline Lamprophyres of Southern Tuscany, Italy. Lithos, 2014, 188: 97-112.

[113]

Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[114]

Tarney J, Jones C E. Trace Element Geochemistry of Orogenic Igneous Rocks and Crustal Growth Models. Journal of the Geological Society, 1994, 151(5): 855-868.

[115]

Tauson L V, Kozlov V D. Jones M J. Distribution Functions and Ratios of Trace Element Concentrations as Estimators of Ore-Bearing Potential of Granites. Geochemical Exploration, 1972, London: Institution of Mining and Metallurgy, 3744

[116]

Tauson L V. Geochemistry and Metallogeny of the Latitic Series. International Geology Review, 1983, 25: 125-135.

[117]

Thompson R N, Fowler M B. Subduction-Related Shoshonitic and Ultrapotassic Magmatism: A Study of Siluro-Ordovician Syenites from the Scottish Caledonides. Contributions to Mineralogy and Petrology, 1986, 94(4): 507-522.

[118]

Turner S, Arnaud N, Liu J, . Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 1996, 37(1): 45-71.

[119]

Valério C S, Macambira M J B, Souza V D S, . SiO2-Saturated Potassic Alkaline Magmatism in the Central Amazonian Craton, Southernmost Uatumã-Anauá Domain, NE Amazonas, Brazil. Brazilian Journal of Geology, 2017, 47(3): 441-446.

[120]

Venturelli G, Thorpe R S, Piaz G V, . Petrogenesis of Calc-Alkaline, Shoshonitic and Associated Ultrapotassic Oligocene Volcanic Rocks from the Northwestern Alps, Italy. Contributions to Mineralogy and Petrology, 1984, 86(3): 209-220.

[121]

Vielzeuf D, Schmidt M W. Melting Relations in Hydrous Systems Revisited: Application to Metapelites, Metagreywackes and Metabasalts. Contributions to Mineralogy and Petrology, 2001, 141(3): 251-267.

[122]

Wang R, Weinberg R F, Collins W J, . Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 2018, 181: 122-143.

[123]

Weaver S L, Wallace P J, Johnston A D. Experimental Constraints on the Origins of Primitive Potassic Lavas from the Trans-Mexican Volcanic Belt. Contributions to Mineralogy and Petrology, 2013, 166(3): 825-843.

[124]

Weaver B L. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 1991, 104(2/3/4): 381-197.

[125]

Weinberg R F, Hasalová P. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 2015, 212/213/214/215: 158-188.

[126]

White R W, Stevens G, Johnson T E. Is the Crucible Reproducible? Reconciling Melting Experiments with Thermodynamic Calculations. Elements, 2011, 7(4): 241-246.

[127]

Wildner W, Nardi L V S, Lima E F. Post-Collisional Alkaline Magmatism on the Taquarembó Plateau: A Well-Preserved Neoproterozoic-Cambrian Plutono-Volcanic Association in Southern Brazil. International Geology Review, 1999, 41(12): 1082-1098.

[128]

Williams H M, Turner S P, Pearce J A, . Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 2004, 45(3): 555-607.

[129]

Yang W B, Niu H C, Shan Q, . Late Paleozoic Calc-Alkaline to Shoshonitic Magmatism and Its Geodynamic Implications, Yuximolegai Area, Western Tianshan, Xinjiang. Gondwana Research, 2012, 22(1): 325-340.

[130]

Zhang Y Q, Xie Y W, Li X H, . Isotopic Characteristics of Shoshonitic Rocks in Eastern Qinghai-Tibet Plateau: Petrogenesis and Its Tectonic Implication. Science in China Series D: Earth Sciences, 2001, 44(1): 1-6.

[131]

Zhao J-X, Shiraishi K, Ellis D J, . Geochemical and Isotopic Studies of Syenites from the Yamato Mountains, East Antarctica: Implications for the Origin of Syenitic Magmas. . Geochimica et Cosmochimica Acta, 1995, 59(7): 1363-1382.

AI Summary AI Mindmap
PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/