Crustal P- and S-Wave Velocity Structure of the North China Craton at 36°N from Active-Source Seismic Data and Its Tectonic Implications

Xiaofeng Tian, Walter D. Mooney, Xiaoguo Deng, Songlin Li, Baofeng Liu, Hanqi Liu

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (3) : 642-663.

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (3) : 642-663. DOI: 10.1007/s12583-021-1530-z
Pacific Plate Subduction and the Yanshanian Movement in Eastern China

Crustal P- and S-Wave Velocity Structure of the North China Craton at 36°N from Active-Source Seismic Data and Its Tectonic Implications

Author information +
History +

Abstract

We present crustal models for seismic P-waves (Vp), S-waves (Vs) and the Vp/Vs ratio across the southern North China Craton along latitude 36°N. Our results are based on inverse and forward modeling of long-range wide-angle reflection/refraction data. The crust of the southern Ordos Block has high lower crustal velocity (7.0 km/s) and a Moho depth of ∼42 km. In contrast, thick sediments and a lower average velocity (compared with the Ordos block) found underneath the Shanxi Graben are likely to be the products of rifting that has occurred since the Cenozoic. Steep Moho dips, exposed basement rock and higher average crustal velocity beneath the Lüliang Mountain and the Taihang Mountain are characteristic of an orogenic belt. The Tanlu fault and the Liaocheng-Lankao fault show sharp crustal velocity variations and a Moho offset. This seismic profile sampled the entire region of the Eastern North China Craton where the cratonic root has been destroyed and the unique crustal structure is correlated with the substantially modified lithosphere. Our crustal seismic velocity model shows a strong correspondence between surface geology, local tectonics and the deep crustal structure.

Keywords

North China Craton / crustal velocity structure / craton destructure / tectonics / wide-angle reflection/refraction

Cite this article

Download citation ▾
Xiaofeng Tian, Walter D. Mooney, Xiaoguo Deng, Songlin Li, Baofeng Liu, Hanqi Liu. Crustal P- and S-Wave Velocity Structure of the North China Craton at 36°N from Active-Source Seismic Data and Its Tectonic Implications. Journal of Earth Science, 2022, 33(3): 642‒663 https://doi.org/10.1007/s12583-021-1530-z

References

Bao X W, Song X D, Li J T. High-Resolution Lithospheric Structure beneath Mainland China from Ambient Noise and Earthquake Surface-Wave Tomography. Earth and Planetary Science Letters, 2015, 417: 132-141.
CrossRef Google scholar
Brocher T M. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bulletin of the Seismological Society of America, 2005, 95(6): 2081-2092.
CrossRef Google scholar
Chen L. Lithospheric Structure Variations between the Eastern and Central North China Craton from S- and P-Receiver Function Migration. Physics of the Earth and Planetary Interiors, 2009, 173(3/4): 216227
Chen L. Concordant Structural Variations from the Surface to the Base of the Upper Mantle in the North China Craton and Its Tectonic Implications. Lithos, 2010, 120 1/2 96-115.
CrossRef Google scholar
Chen L, Zheng T Y, Xu W W. Receiver Function Migration Image of the Deep Structure in the Bohai Bay Basin, Eastern China. Geophysical Research Letters, 2006, 33(20): L20307
CrossRef Google scholar
Chen L, Zheng T Y, Xu W W. A Thinned Lithospheric Image of the Tanlu Fault Zone, Eastern China: Constructed from Wave Equation Based Receiver Function Migration. Journal of Geophysical Research: Solid Earth, 2006, 111 B9 B09312
CrossRef Google scholar
Chen L, Tao W, Zhao L, . Distinct Lateral Variation of Lithospheric Thickness in the Northeastern North China Craton. Earth and Planetary Science Letters, 2008, 267 1/2 56-68.
CrossRef Google scholar
Chen L, Jiang M, Yang J, . Presence of an Intralithospheric Discontinuity in the Central and Western North China Craton: Implications for Destruction of the Craton. Geology, 2014, 42(3): 223-226.
CrossRef Google scholar
Cho H M, Baag C E, Lee J M, . P- and S-Wave Velocity Model along Crustal Scale Refraction and Wide-Angle Reflection Profile in the Southern Korean Peninsula. Tectonophysics, 2013, 582: 84-100.
CrossRef Google scholar
Christensen N I, Mooney W D. Seismic Velocity Structure and Composition of the Continental Crust: A Global View. Journal of Geophysical Research: Solid Earth, 1995, 100(B6): 9761-9788.
CrossRef Google scholar
Duan Y H, Wang F Y, Zhang X K, . Three-Dimensional Crustal Velocity Structure Model of the Middle-Eastern North China Craton (HBCrust1.0). Science China Earth Sciences, 2016, 59(7): 1477-1488.
CrossRef Google scholar
Fan W M, Guo F, Wang Y J, . Post-Orogenic Bimodal Volcanism along the Sulu Orogenic Belt in Eastern China. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9/10): 733-746.
CrossRef Google scholar
Faure M, Lin W, Le Breton N. Where is the North China-South China Block Boundary in Eastern China?. Geology, 2001, 29(2): 119-122.
CrossRef Google scholar
Fuchs K, Müller G. Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations. Geophysical Journal of the Royal Astronomical Society, 1971, 23(4): 417-433.
CrossRef Google scholar
Gao S, Rudnick R L, Yuan H L, . Recycling Lower Continental Crust in the North China Craton. Nature, 2004, 432(7019): 892-897.
CrossRef Google scholar
Gao S, Zhang B R, Jin Z M, . How Mafic is the Lower Continental Crust?. Earth and Planetary Science Letters, 1998, 161(1/2/3/4): 101-117.
CrossRef Google scholar
Guo F, Fan W M, Wang Y J, . Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China: Implications for Enrichment Processes beneath Continental Collisional Belt. Lithos, 2004, 78(3): 291-305.
CrossRef Google scholar
Grad M, Guterch A, Keller G R, . Lithospheric Structure beneath Trans-Carpathian Transect from Precambrian Platform to Pannonian Basin: CELEBRATION 2000 Seismic Profile CEL05. Journal of Geophysical Research: Solid Earth, 2006, 111(B3): B03301
CrossRef Google scholar
Grad M, Jensen S L, Keller G R, . Crustal Structure of the Trans-European Suture Zone Region along POLONAISE’97 Seismic Profile P4. Journal of Geophysical Research: Solid Earth, 2003, 108 B11 2541
CrossRef Google scholar
Hole J A, Zelt B C. 3-D Finite-Difference Reflection Travel Times. Geophysical Journal International, 1995, 121 2 427-434.
CrossRef Google scholar
Hu S B, He L J, Wang J Y. Heat Flow in the Continental Area of China: A New Data Set. Earth and Planetary Science Letters, 2000, 179(2): 407-419.
CrossRef Google scholar
Huang Z X, Li H Y, Zheng Y J, . The Lithosphere of North China Craton from Surface Wave Tomography. Earth and Planetary Science Letters, 2009, 288(1/2): 164-173.
CrossRef Google scholar
Janik T, Kozlovskaya E, Yliniemi J. Crust-Mantle Boundary in the Central Fennoscandian Shield: Constraints from Wide-Angle P and S Wave Velocity Models and New Results of Reflection Profiling in Finland. Journal of Geophysical Research: Solid Earth, 2007, 112(B4): B04302
CrossRef Google scholar
Janik T, Kozlovskaya E, Heikkinen P, . Evidence for Preservation of Crustal Root beneath the Proterozoic Lapland-Kola Orogen (Northern Fennoscandian Shield) Derived from P and S Wave Velocity Models of POLAR and HUKKA Wide-Angle Reflection and Refraction Profiles and FIRE4 Reflection Transect. Journal of Geophysical Research: Solid Earth, 2009, 114 B6 B06308
CrossRef Google scholar
Ji S C, Wang Q, Salisbury M H. Composition and Tectonic Evolution of the Chinese Continental Crust Constrained by Poisson’s Ratio. Tectonophysics, 2009, 463 1/2/3/4 15-30.
CrossRef Google scholar
Jia S X, Wang F Y, Tian X F, . Crustal Structure and Tectonic Study of North China Craton from a Long Deep Seismic Sounding Profile. Tectonophysics, 2014, 627: 48-56.
CrossRef Google scholar
Kusky T M, Li J H, Tucker R D. The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 2001, 292(5519): 1142-1145.
CrossRef Google scholar
Kusky T M, Windley B F, Zhai M G. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. Geological Society, London, Special Publications, 2007, 280(1): 1-34.
CrossRef Google scholar
Kusky T, Mooney W D. Is the Ordos Basin Floored by a Trapped Oceanic Plateau?. Earth and Planetary Science Letters, 2015, 429: 197-204.
CrossRef Google scholar
Lai X L, Li S L, Song Z L, . Structure of Crust and Upper Mantle in Tianshui Wudu Strong Earthquake Region of North-South Tectonic Belt. Earth Science—.Journal of China University of Geosciences, 2009, 34(4): 651-657
Lei J S. Upper-Mantle Tomography and Dynamics beneath the North China Craton. Journal of Geophysical Research: Solid Earth, 2012, 117(B6): B06313
CrossRef Google scholar
Li L, Zhang J J, Zhong D L, . Main Characteristics of the Decollement Structures along the Cambrian/Archean Unconformity Surface in Western Shandong. Chinese Journal of Geology, 2007, 42 2 335-352
Li P, Liao L, Liu P, . Numerical Simulation of Relationship between Stress Field Evolution and Historical Strong Earthquakes in the Shanxi Seismic Zone. Bulletin of the Seismological Society of America, 2018, 108(5A): 2389-2407.
CrossRef Google scholar
Li S G, Xiao Y L, Liou D L, . Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 1993, 109(1/2/3/4): 89-111.
CrossRef Google scholar
Li S L, Lai X L, Liu B F, . Differences in Lithospheric Structures between Two Sides of Taihang Mountain Obtained from the Zhucheng-Yichuan Deep Seismic Sounding Profile. Science China Earth Sciences, 2011, 54(6): 871-880.
CrossRef Google scholar
Li S L, Lai X L, Sun Y, . Calculation of Ground Rotational Motions Using Seismic Array Data. Journal of Earth Science, 2012, 23(2): 173-179.
CrossRef Google scholar
Ling Y, Chen L, Wei Z G, . Crustal S-Velocity Structure and Radial Anisotropy beneath the Southern Part of Central and Western North China Craton and the Adjacent Qilian Orogenic Belt from Ambient Noise Tomography. Science China Earth Sciences, 2017, 60(10): 1752-1768.
CrossRef Google scholar
Liu D Y, Nutman A P, Compston W, . Remnants of ⩾3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 1992, 20(4): 339-342.
CrossRef Google scholar
Liu S W, Pan Y M, Xie Q L, . Archean Geodynamics in the Central Zone, North China Craton: Constraints from Geochemistry of Two Contrasting Series of Granitoids in the Fuping and Wutai Complexes. Precambrian Research, 2004, 130(1/2/3/4): 229-249.
CrossRef Google scholar
Liu S W, Zhao G C, Wilde S A, . Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 2006, 148(3/4): 205-224.
CrossRef Google scholar
Luo S, Yao H J, Li Q S, . High-Resolution 3D Crustal S-Wave Velocity Structure of the Middle-Lower Yangtze River Metallogenic Belt and Implications for Its Deep Geodynamic Setting. Science China Earth Sciences, 2019, 62(9): 1361-1378.
CrossRef Google scholar
Ma X Y, Liu C Q, Liu G D. Xiangshui (Jiangsu Province) to Mandal (Nei Monggol) Geoscience Transect. Acta Geologica Sinica, 1991, 65(3): 199-215
Magnani M B, Zelt C A, Levander A, . Crustal Structure of the South American-Caribbean Plate Boundary at 67° W from Controlled Source Seismic Data. Journal of Geophysical Research: Solid Earth, 2009, 114(B2): B02312
CrossRef Google scholar
Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic Lithoprobes and the Loss of >120 km of Archaean Lithosphere, Sino-Korean Craton, China. Geological Society, London, Special Publications, 1993, 76 1 71-81.
CrossRef Google scholar
Menzies M, Xu Y G, Zhang H F, . Integration of Geology, Geophysics and Geochemistry: A Key to Understanding the North China Craton. Lithos, 2007, 96(1/2): 1-21.
CrossRef Google scholar
Murphy J M, Fuis G S, Ryberg T, . Detailed P- and S-Wave Velocity Models along the LARSE II Transect, Southern California. Bulletin of the Seismological Society of America, 2010, 100(6): 3194-3212.
CrossRef Google scholar
Musacchio G, Mooney W D, Luetgert J H, . Composition of the Crust in the Grenville and Appalachian Provinces of North America Inferred from Vp/Vs Ratios. Journal of Geophysical Research: Solid Earth, 1997, 102(B7): 15225-15241.
CrossRef Google scholar
Panza G F, Raykova R B. Structure and Rheology of Lithosphere in Italy and Surrounding. Terra Nova, 2008, 20(3): 194-199.
CrossRef Google scholar
Sandmeier K J, Wenzel F. Synthetic Seismograms for a Complex Crustal Model. Geophysical Research Letters, 1986, 13(1): 22-25.
CrossRef Google scholar
Środa P, Czuba W, Grad M, . Crustal and Upper Mantle Structure of the Western Carpathians from CELEBRATION 2000 Profiles CEL01 and CEL04: Seismic Models and Geological Implications. Geophysical Journal International, 2006, 167(2): 737-760.
CrossRef Google scholar
Starostenko V, Janik T, Kolomiyets K, . Seismic Velocity Model of the Crust and Upper Mantle along Profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 2013, 608: 1049-1072.
CrossRef Google scholar
Stern R J, Li S M, Keller G R. Continental Crust of China: A Brief Guide for the Perplexed. Earth-Science Reviews, 2018, 179: 72-94.
CrossRef Google scholar
Sun W C, Xu J, Yang Z E, . Geoscience Transect from Shanghai Fengxian to Alashan Left Banner in the Inner Mongolia, 1992, Beijing: Seismological Press
Tang Y C, Chen Y J, Zhou S Y, . Lithosphere Structure and Thickness beneath the North China Craton from Joint Inversion of Ambient Noise and Surface Wave Tomography. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2333-2346.
CrossRef Google scholar
Tian X B, Teng J W, Zhang H S, . Structure of Crust and Upper Mantle beneath the Ordos Block and the Yinshan Mountains Revealed by Receiver Function Analysis. Physics of the Earth and Planetary Interiors, 2011, 184(3/4): 186-193.
CrossRef Google scholar
Tian X F, Zelt C A, Wang F Y, . Crust Structure of the North China Craton from a Long-Range Seismic Wide-Angle-Reflection/Refraction Data. Tectonophysics, 2014, 634: 237-245.
CrossRef Google scholar
Tian Y, Zhao D P, Sun R M, . Seismic Imaging of the Crust and Upper Mantle beneath the North China Craton. Physics of the Earth and Planetary Interiors, 2009, 172(3/4): 169-182.
CrossRef Google scholar
Vidale J. Finite-Difference Calculation Of Travel-Times. Bulletin of the Seismological Society of America, 1988, 78(6): 2062-2076
Wang P, Xu M J, Wang L S, . Seismic Evidence for the Stratified Lithosphere in the South of the North China Craton. Journal of Geophysical Research: Solid Earth, 2013, 118(2): 570-582.
CrossRef Google scholar
Wei Z G, Chen L, Xu W W. Crustal Thickness and Vp/Vs Ratio of the Central and Western North China Craton and Its Tectonic Implications. Geophysical Journal International, 2011, 186(2): 385-389.
CrossRef Google scholar
Wei Z G, Chen L, Jiang M M, . Lithospheric Structure beneath the Central and Western North China Craton and the Adjacent Qilian Orogenic Belt from Rayleigh Wave Dispersion Analysis. Tectonophysics, 2015, 646: 130-140.
CrossRef Google scholar
Wu F Y, Walker R J, Ren X W, . Osmium Isotopic Constraints on the Age of Lithospheric Mantle beneath Northeastern China. Chemical Geology, 2003, 196(1/2/3/4): 107-129.
CrossRef Google scholar
Wu F Y, Xu Y G, Zhu R X, . Thinning and Destruction of the Cratonic Lithosphere: A Global Perspective. Science China Earth Sciences, 2014, 57(12): 2878-2890.
CrossRef Google scholar
Xia B, Thybo H, Artemieva I M. Seismic Crustal Structure of the North China Craton and Surrounding Area: Synthesis and Analysis. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5181-5207.
CrossRef Google scholar
Xu Y G. Thermo-Tectonic Destruction of the Archaean Lithospheric Keel beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9/10): 747-757.
CrossRef Google scholar
Yin A, Nie S Y. An Indentation Model for the North and South China Collision and the Development of the Tan-Lu and Honam Fault Systems, Eastern Asia. Tectonics, 1993, 12(4): 801-813.
CrossRef Google scholar
Yu C Q, Chen W P, Ning J Y, . Thick Crust beneath the Ordos Plateau: Implications for Instability of the North China Craton. Earth and Planetary Science Letters, 2012, 357/358: 366-375.
CrossRef Google scholar
Zelt C A, Smith R B. Seismic Traveltime Inversion for 2-D Crustal Velocity Structure. Geophysical Journal International, 1992, 108(1): 16-34.
CrossRef Google scholar
Zelt C A, Forsyth D A. Modeling Wide-Angle Seismic Data for Crustal Structure: Southeastern Grenville Province. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 11687-11704.
CrossRef Google scholar
Zelt C A, Barton P J. Three-Dimensional Seismic Refraction Tomography: A Comparison of Two Methods Applied to Data from the Faeroe Basin. Journal of Geophysical Research: Solid Earth, 1998, 103(B4): 7187-7210.
CrossRef Google scholar
Zelt C A. Modelling Strategies and Model Assessment for Wide-Angle Seismic Traveltime Data. Geophysical Journal International, 1999, 139(1): 183-204.
CrossRef Google scholar
Zelt C A, Sain K, Naumenko J V, . Assessment of Crustal Velocity Models Using Seismic Refraction and Reflection Tomography. Geophysical Journal International, 2003, 153(3): 609-626.
CrossRef Google scholar
Zhai M G, Liu W J. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 2003, 122(1/2/3/4): 183-199.
CrossRef Google scholar
Zhai M G, Santosh M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 2011, 20(1): 6-25.
CrossRef Google scholar
Zhai M G, Windley B F, Kusky T M, . Mesozoic Subcontinental Lithospheric Thinning under Eastern Asia, 2007, London: Geological Society Special Publications, 280, London
Zhang H F, Sun M, Zhou X H, . Mesozoic Lithosphere Destruction beneath the North China Craton: Evidence from Major-, Trace-Element and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts. Contributions to Mineralogy and Petrology, 2002, 144(2): 241-254.
CrossRef Google scholar
Zhang Z J, Wu J, Deng Y F, . Lateral Variation of the Strength of Lithosphere across the Eastern North China Craton: New Constraints on Lithospheric Disruption. Gondwana Research, 2012, 22(3/4): 1047-1059.
CrossRef Google scholar
Zhang Z J, Zhang G W, Deng Y F, . Geophysical Transect across the North China Craton: A Perspective on the Interaction between Tibetan Eastward Escape and Pacific Westward Flow. Gondwana Research, 2014, 26(1): 311-322.
CrossRef Google scholar
Zhao G C, Wilde S A, Cawood P A, . Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 2001, 107(1/2): 45-73.
CrossRef Google scholar
Zhao G C, Sun M, Wilde S A. Major Tectonic Units of the North China Craton and Their Paleoproterozoic Assembly. Science in China Series D, 2003, 46(1): 23-38.
CrossRef Google scholar
Zhao G C, Sun M, Wilde S A, . Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 2005, 136(2): 177-202.
CrossRef Google scholar
Zhao L, Allen R M, Zheng T Y, . Reactivation of an Archean Craton: Constraints from P- and S-Wave Tomography in North China. Geophysical Research Letters, 2009, 36(17): L17306
CrossRef Google scholar
Zheng J P, Griffin W L, O’Reilly S Y, . Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 2007, 71 21 5203-5225.
CrossRef Google scholar
Zheng T Y, Zhao L, Xu W W, . Insight into Modification of North China Craton from Seismological Study in the Shandong Province. Geophysical Research Letters, 2008, 35(22): L22305
CrossRef Google scholar
Zheng T Y, Zhao L, Zhu R X. New Evidence from Seismic Imaging for Subduction during Assembly of the North China Craton. Geology, 2009, 37 5 395-398.
CrossRef Google scholar
Zheng T Y, Duan Y H, Xu W W, . A Seismic Model for Crustal Structure in North China Craton. Earth and Planetary Physics, 2017, 1(1): 26-34.
CrossRef Google scholar
Zheng Y F. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 2008, 53(20): 3081-3104
Zheng Y F, Fu B, Gong B, . Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 2003, 62(1/2): 105-161.
CrossRef Google scholar
Zhu R X, Zheng T Y. Destruction Geodynamics of the North China Craton and Its Paleoproterozoic Plate Tectonics. Chinese Science Bulletin, 2009, 54(19): 3354-3366
Zhu R X, Chen L, Wu F Y, . Timing, Scale and Mechanism of the Destruction of the North China Craton. Science China Earth Sciences, 2011, 54(6): 789-797.
CrossRef Google scholar
Zhu R X, Xu Y G, Zhu G, . Destruction of the North China Craton. Science China Earth Sciences, 2012, 55(10): 1565-1587.
CrossRef Google scholar
Zhu R X, Yang J H, Wu F Y. Timing of Destruction of the North China Craton. Lithos, 2012, 149: 51-60.
CrossRef Google scholar
Zhu R X, Xu Y G. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China Earth Sciences, 2019, 62(9): 1340-1350.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/