Limited Contribution of Preferential Dissolution to Radiogenic Uranium Isotope Disequilibrium Observed in Weathered Moraines

Laifeng Li , Laura F. Robinson , Tianyu Chen , Zhewen Xu , Jun Chen , Gaojun Li

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 57 -66.

PDF
Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 57 -66. DOI: 10.1007/s12583-021-1523-y
Article

Limited Contribution of Preferential Dissolution to Radiogenic Uranium Isotope Disequilibrium Observed in Weathered Moraines

Author information +
History +
PDF

Abstract

Radiogenic uranium isotope disequilibrium (234U/238U) has been used to trace a variety of Earth surface processes, and is usually attributed to direct recoil of 234Th and preferential dissolution of radioactively damaged lattices at the mineral surface. However, the relative contribution of these two mechanisms in the natural environment remains unresolved, making it hard to use the extent of disequilibrium to quantify processes such as weathering. This study tests the contribution of preferential dissolution using well-characterized weathered moraines and river sediments from the southeastern Tibetan Plateau. The observations show that weathering of recent moraines where the contribution from direct recoil is negligible and is not associated with depletion of 234U at the mineral surface. It suggests a limited role for preferential dissolution in this setting. We attribute this lack of preferential dissolution to a near-to-equilibrium dissolution at the weathering interfaces, with little development of etch pits associated with radioactively damaged energetic sites.

Keywords

preferential dissolution / uranium isotope disequilibrium / Gongga Mountain / comminution / comminution age / etch pits

Cite this article

Download citation ▾
Laifeng Li, Laura F. Robinson, Tianyu Chen, Zhewen Xu, Jun Chen, Gaojun Li. Limited Contribution of Preferential Dissolution to Radiogenic Uranium Isotope Disequilibrium Observed in Weathered Moraines. Journal of Earth Science, 2022, 33(1): 57-66 DOI:10.1007/s12583-021-1523-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersen M B, Erel Y, Bourdon B. Experimental Evidence for 234U-238U Fractionation during Granite Weathering with Implications for 234U/238U in Natural Waters. Geochimica et Cosmochimica Acta, 2009, 73(14): 4124-4141.

[2]

Bonotto D M, Andrews J N. The Mechanism of 234U/238U Activity Ratio Enhancement in Karstic Limestone Groundwater. Chemical Geology, 1993, 103(1/2/3/4): 193-206.

[3]

Bonotto D M, Andrews J N, Darbyshire D P F. A Laboratory Study of the Transfer of 234U and 238U during Water-Rock Interactions in the Carnmenellis Granite (Cornwall, England) and Implications for the Interpretation of Field Data. Applied Radiation and Isotopes, 2001, 54(6): 977-994.

[4]

Bosia C, Chabaux F, Pelt E, . U-Series Disequilibria in Minerals from Gandak River Sediments (Himalaya). Chemical Geology, 2018, 477: 22-34.

[5]

Bourdon B, Bureau S, Andersen M B, . Weathering Rates from Top to Bottom in a Carbonate Environment. Chemical Geology, 2009, 258(3/4): 275-287.

[6]

Bourdon B, Turner S, Henderson G M, . Introduction to U-Series Geochemistry. Reviews in Mineralogy & Geochemistry, 2003, 52(1): 1-21.

[7]

Bragagni A, Avanzinelli R, Freymuth H, . Recycling of Crystal Mush-Derived Melts and Short Magma Residence Times Revealed by U-Series Disequilibria at Stromboli Volcano. Earth and Planetary Science Letters, 2014, 404: 206-219.

[8]

Brantley S L, Crane S R, Crerar D A, . Dissolution at Dislocation Etch Pits in Quartz. Geochimica et Cosmochimica Acta, 1986, 50(10): 2349-2361.

[9]

Brantley S L, Olsen A A. Reaction Kinetics of Primary Rock-Forming Minerals under Ambient Conditions. Treatise on Geochemistry (Second Edition), 2014, 7: 69-113.

[10]

Brown R W, Summerfield M A, Gleadow A J W. Denudational History along a Transect across the Drakensberg Escarpment of Southern Africa Derived from Apatite Fission Track Thermochronology. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): ETG10-1-ETG10-18.

[11]

Chabaux F, Blaes E, Stille P, . Regolith Formation Rate from U-Series Nuclides: Implications from the Study of a Spheroidal Weathering Profile in the Rio Icacos Watershed (Puerto Rico). Geochimica et Cosmochimica Acta, 2013, 100: 73-95.

[12]

Chabaux F, Bourdon B, Riotte J. Chapter 3 U-Series Geochemistry in Weathering Profiles, River Waters and Lakes. Radioactivity in the Environment, 2008, 13: 49-104.

[13]

Chabaux F, Riotte J, Dequincey O, . Bourdon B, Henderson G M, Lundstrom C C, . U-Th-Ra Fractionation during Weathering and River Transport. Uranium-Series Geochemistry, 2003, Boston: De Gruyter, 533-576.

[14]

Daval D, Sissmann O, Menguy N, . Influence of Amorphous Silica Layer Formation on the Dissolution Rate of Olivine at 90 °C and Elevated pCO2. Chemical Geology, 2011, 284(1/2): 193-209.

[15]

DePaolo D J, Lee V E, Christensen J N, . Uranium Comminution Ages: Sediment Transport and Deposition Time Scales. Comptes Rendus Geoscience, 2012, 344(11/12): 678687

[16]

DePaolo D J, Maher K, Christensen J N, . Sediment Transport Time Measured with U-Series Isotopes: Results from ODP North Atlantic Drift Site 984. Earth and PlanetaryScience Letters, 2006, 248 1/2 394-410.

[17]

Dosseto A. Rink J W, Thompson J W. Chemical Weathering (U-Series). Encyclopedia of Scientific Dating Methods, 2014, Dordrecht: Springer Netherlands, 152-169

[18]

Dosseto A, Bourdon B, Gaillardet J, . Time Scale and Conditions of Weathering under Tropical Climate: Study of the Amazon Basin with U-Series. Geochimica et Cosmochimica Acta, 2006, 70(1): 71-89.

[19]

Dosseto A, Bourdon B, Gaillardet J, . Weathering and Transport of Sediments in the Bolivian Andes: Time Constraints from Uranium-Series Isotopes. Earth and Planetary Science Letters, 2006, 248(3/4): 759-771.

[20]

Dosseto A, Turner S P, Douglas G B. Uranium-Series Isotopes in Colloids and Suspended Sediments: Timescale for Sediment Production and Transport in the Murray-Darling River System. Earth and Planetary Science Letters, 2006, 246(3/4): 418-431.

[21]

Dosseto A, Bourdon B, Turner S P. Uranium-Series Isotopes in River Materials: Insights into the Timescales of Erosion and Sediment Transport. Earth and Planetary Science Letters, 2008, 265(1/2): 1-17.

[22]

Dosseto A, Buss H L, Chabaux F. Age and Weathering Rate of Sediments in Small Catchments: The Role of Hillslope Erosion. Geochimica et Cosmochimica Acta, 2014, 132: 238-258.

[23]

Dosseto A, Menozzi D, Kinsley L P J. Age and Rate of Weathering Determined Using Uranium-Series Isotopes: Testing Various Approaches. Geochimica et Cosmochimica Acta, 2019, 246: 213-233.

[24]

Dunk R M, Mills R A, Jenkins W J. A Reevaluation of the Oceanic Uranium Budget for the Holocene. Chemical Geology, 2002, 190(1/2/3/4): 45-67.

[25]

Durand S, Chabaux F, Rihs S, . U Isotope Ratios as Tracers of Groundwater Inputs into Surface Waters: Example of the Upper Rhine Hydrosystem. Chemical Geology, 2005, 220(1/2): 1-19.

[26]

Eyal Y, Olander D R. Leaching of Uranium and Thorium from Monazite: I. Initial Leaching. Geochimica et Cosmochimica Acta, 1990, 54(7): 1867-1877.

[27]

Fleischer R L. Isotopic Disequilibrium of Uranium: Alpha-Recoil Damage and Preferential Solution Effects. Science, 1980, 207(4434): 979-981.

[28]

Fleischer R L. Alpha-Recoil Damage and Solution Effects in Minerals: Uranium Isotopic Disequilibrium and Radon Release. Geochimica et Cosmochimica Acta, 1982, 46(11): 2191-2201.

[29]

Fleischer R L, Raabe O G. Recoiling Alpha-Emitting Nuclei. Mechanisms for Uranium-Series Disequilibrium. Geochimica et Cosmochimica Acta, 1978, 42(7): 973-978.

[30]

Fleming A, Summerfield M A, Stone J O, . Denudation Rates for the Southern Drakensberg Escarpment, SE Africa, Derived from in-situ-Produced Cosmogenic 36Cl: Initial Results. Journal of the Geological Society, 1999, 156(2): 209-212.

[31]

Granet M, Chabaux F, Stille P, . U-Series Disequilibria in Suspended River Sediments and Implication for Sediment Transfer Time in Alluvial Plains: The Case of the Himalayan Rivers. Geochimica et Cosmochimica Acta, 2010, 74(10): 2851-2865.

[32]

Handley H K, Turner S, Afonso J C, . Sediment Residence Times Constrained by Uranium-Series Isotopes: A Critical Appraisal of the Comminution Approach. Geochimica et Cosmochimica Acta, 2013, 103: 245-262.

[33]

He L, Tang Y. Soil Development along Primary Succession Sequences on Moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena, 2008, 72(2): 259-269.

[34]

Huckle D, Ma L, McIntosh J, . U-Series Isotopic Signatures of Soils and Headwater Streams in a Semi-Arid Complex Volcanic Terrain. Chemical Geology, 2016, 445: 68-83.

[35]

Hussain N, Lal D. Preferential Solution of 234U from Recoil Tracks and 234U/238U Radioactive Disequilibrium in Natural Waters. Proceedings of the Indian Academy of Sciences: Earth and Planetary Sciences, 1986, 95(2): 245

[36]

Keech A R, West A J, Pett-Ridge J C, . Evaluating U-Series Tools for Weathering Rate and Duration on a Soil Sequence of Known Ages. Earth and PlanetaryScience Letters, 2013, 374: 24-35.

[37]

Kigoshi K. Alpha-Recoil Thorium-234: Dissolution into Water and the Uranium-234/Uranium-238 Disequilibrium in Nature. Science, 1971, 173(3991): 47-48.

[38]

Lasaga A C, Blum A E. Surface Chemistry, Etch Pits and Mineral-Water Reactions. Geochimica et Cosmochimica Acta, 1986, 50(10): 2363-2379.

[39]

Lee V E, DePaolo D J, Christensen J N. Uranium-Series Comminution Ages of Continental Sediments: Case Study of a Pleistocene Alluvial Fan. Earth and Planetary Science Letters, 2010, 296(3/4): 244-254.

[40]

Li C, Yang S Y, Lian E G, . A Review of Comminution Age Method and Its Potential Application in the East China Sea to Constrain the Time Scale of Sediment Source-to-Sink Process. Journal of Ocean University of China, 2015, 14(3): 399-406.

[41]

Li C, Yang S Y, Zhao J X, . The Time Scale of River Sediment Source-to-Sink Processes in East Asia. Chemical Geology, 2016, 446 138-146.

[42]

Li L F, Chen J, Chen T Y, . Weathering Dynamics Reflected by the Response of Riverine Uranium Isotope Disequilibrium to Changes in Denudation Rate. Earth and Planetary Science Letters, 2018, 500: 136-144.

[43]

Li L, Chen J, Chen Y, . Uranium Isotopic Constraints on the Provenance of Dust on the Chinese Loess Plateau. Geology, 2018, 46(9): 747-750.

[44]

Li L, Chen J, Hedding D W, . Uranium Isotopic Constraints on the Nature of the Prehistoric Flood at the Lajia Site, China. Geology, 2020, 48(1): 15-18.

[45]

Li L, Liu X J, Li T, . Uranium Comminution Age Tested by the Eolian Deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 2017, 467: 64-71.

[46]

Li Z X, He Y Q, Yang X M, . Changes of the Hailuogou Glacier, Mt. Gongga, China, Against the Background of Climate Change during the Holocene. Quaternary International, 2010, 218(1/2): 166-175.

[47]

Liang Z W, Tian S H. Uranium “Stable” Isotope Fractionation and Its Applications in Earth Science. Earth Science, 2021, 46(12): 4405-4426

[48]

Lidman F, Peralta-Tapia A, Vesterlund A, . 234U/238U in a Boreal Stream Network—Relationship to Hydrological Events, Groundwater and Scale. Chemical Geology, 2016, 420: 240-250.

[49]

Liu Q, Liu S Y. Seasonal Evolution of Englacial and Subglacial Drainage System of Temperate Glacier Revealed by Hydrological Analysis. Journal of Glaciology and Geocryology, 2009, 31(5): 857-865

[50]

Liu Q, Liu S Y, Zhang Y, . Recent Shrinkage and Hydrological Response of Hailuogou Glacier, a Monsoon Temperate Glacier on the East Slope of Mount Gongga, China. Journal of Glaciology, 2010, 56(196): 215-224.

[51]

X, Versteegh G J M, Song J M, . Geochemistry of Middle Holocene Sediments from South Yellow Sea: Implications to Provenance and Climate Change. Journal of Earth Science, 2016, 27(5): 751-762.

[52]

Ma L, Chabaux F, Pelt E, . The Effect of Curvature on Weathering Rind Formation: Evidence from Uranium-Series Isotopes in Basaltic Andesite Weathering Clasts in Guadeloupe. Geochimica et Cosmochimica Acta, 2012, 80: 92-107.

[53]

Ma L, Dosseto A, Gaillardet J, . Quantifying Weathering Rind Formation Rates Using in situ Measurements of U-Series Isotopes with Laser Ablation and Inductively Coupled Plasma-Mass Spectrometry. Geochimica et Cosmochimica Acta, 2019, 247: 1-26.

[54]

Maher K, DePaolo D J, Christensen J N. U-Sr Isotopic Speedometer: Fluid Flow and Chemical Weathering Rates in Aquifers. Geochimica et Cosmochimica Acta, 2006, 70(17): 4417-4435.

[55]

Maher K, DePaolo D J, Lin J C F. Rates of Silicate Dissolution in Deep-Sea Sediment: In situ Measurement Using 234U/238U of Pore Fluids. Geochimica et Cosmochimica Acta, 2004, 68(22): 4629-4648.

[56]

Moreira-Nordemann L M. Use of 234U/238U Disequilibrium in Measuring Chemical Weathering Rate of Rocks. Geochimica et Cosmochimica Acta, 1980, 44(1): 103-108.

[57]

Nagy K L, Lasaga A C. Dissolution and Precipitation Kinetics of Gibbsite at 80 °C and pH3: The Dependence on Solution Saturation State. Geochimica et Cosmochimica Acta, 1992, 56(8): 3093-3111.

[58]

Nasdala L, Wenzel M, Vavra G, . Metamictisation of Natural Zircon: Accumulation versus Thermal Annealing of Radioactivity-Induced Damage. Contributions to Mineralogy and Petrology, 2001, 141(2): 125-144.

[59]

Nesbitt H W, Young G M. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 1982, 299(5885): 715-717.

[60]

Owen L A, Finkel R C, Barnard P L, . Climatic and Topographic Controls on the Style and Timing of Late Quaternary Glaciation Throughout Tibet and the Himalaya Defined by 10Be Cosmogenic Radionuclide Surface Exposure Dating. Quaternary Science Reviews, 2005, 24(12/13): 1391-1411.

[61]

Parruzot B, Jollivet P, Rébiscoul D, . Long-Term Alteration of Basaltic Glass: Mechanisms and Rates. Geochimica et Cosmochimica Acta, 2015, 154: 28-48.

[62]

Pelt E, Chabaux F, Innocent C, . Uranium-Thorium Chronometry of Weathering Rinds: Rock Alteration Rate and Paleo-Isotopic Record of Weathering Fluids. Earth and Planetary Science Letters, 2008, 276(1/2): 98-105.

[63]

Pogge von Strandmann P A E, Burton K W, James R H, . Assessing the Role of Climate on Uranium and Lithium Isotope Behaviour in Rivers Draining a Basaltic Terrain. Chemical Geology, 2010, 270(1/4): 227-239.

[64]

Riebe C S, Hahm W J, Brantley S L. Controls on Deep Critical Zone Architecture: A Historical Review and Four Testable Hypotheses. Earth Surface Processes and Landforms, 2017, 42(1): 128-156.

[65]

Riebe C S, Kirchner J W, Granger D E, . Strong Tectonic and Weak Climatic Control of Long-Term Chemical Weathering Rates. Geology, 2001, 29(6): 511

[66]

Rihs S, Gontier A, Voinot A, . Field Biotite Weathering Rate Determination Using U-Series Disequilibria. Geochimica et Cosmochimica Acta, 2020, 276: 404-420.

[67]

Riotte J, Chabaux F. (234U/238U) Activity Ratios in Freshwaters as Tracers of Hydrological Processes: The Strengbach Watershed (Vosges, France). Geochimica et Cosmochimica Acta, 1999, 63(9): 1263-1275.

[68]

Geochemistry, Geophysics, Geosystems, 2006, 7(5

[69]

Robinson L F, Henderson G M, Hall L, . Climatic Control of Riverine and Seawater Uranium-Isotope Ratios. Science, 2004, 305 5685): 851-854.

[70]

Ruiz-Agudo E, Putnis C V, Rodriguez-Navarro C, . Mechanism of Leached Layer Formation during Chemical Weathering of Silicate Minerals. Geology, 2012, 40(10): 947-950.

[71]

Smalley I. Making the Material: The Formation of Silt Sized Primary Mineral Particles for Loess Deposits. Quaternary Science Reviews, 1995, 14(7/8): 645-651.

[72]

Su H, Dong M, Hu Z B. Late Miocene Birth of the Middle Jinsha River Revealed by the Fluvial Incision Rate. Global and Planetary Change, 2019, 183 103002

[73]

Su Z, Song G P, Cao Z T. Maritime Characteristics of Hailuogou Glacier in the Gongga Mountains. Journal of Glaciology and Geocryology, 1996, 18(S1): 51-59

[74]

Sun J M. Provenance of Loess Material and Formation of Loess Deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 2002, 203(3/4): 845-859.

[75]

Taylor A, Blum J D. Relation between Soil Age and Silicate Weathering Rates Determined from the Chemical Evolution of a Glacial Chronosequence. Geology, 1995, 23(11): 979-982.

[76]

Thollon M, Bayon G, Toucanne S, . The Distribution of (234U/238U) Activity Ratios in River Sediments. Geochimica et Cosmochimica Acta, 2020, 290 216-234.

[77]

Vigier N, Bourdon B, Turner S, . Erosion Timescales Derived from U-Decay Series Measurements in Rivers. Earth and Planetary Science Letters, 2001, 193(3/4): 549-563.

[78]

Wang J, Pan B T, Zhang G L, . Late Quaternary Glacial Chronology on the Eastern Slope of Gongga Mountain, Eastern Tibetan Plateau, China. Science China Earth Sciences, 2013, 56(3): 354-365.

[79]

Wang R M, You C F. Uranium and Strontium Isotopic Evidence for Strong Submarine Groundwater Discharge in an Estuary of a Mountainous Island: A Case Study in the Gaoping River Estuary, Southwestern Taiwan. Marine Chemistry, 2013, 157: 106-116.

[80]

Wang R M, You C F. Precise Determination of U Isotopic Compositions in Low Concentration Carbonate Samples by MC-ICP-MS. Talanta, 2013, 107: 67-73.

[81]

White A F, Blum A E, Schulz M S, . Chemical Weathering Rates of a Soil Chronosequence on Granitic Alluvium: I. Quantification of Mineralogical and Surface Area Changes and Calculation of Primary Silicate Reaction Rates. Geochimica et Cosmochimica Acta, 1996, 60(14): 2533-2550.

[82]

White A F, Brantley S L. The Effect of Time on the Weathering of Silicate Minerals: Why do Weathering Rates Differ in the Laboratory and Field?. Chemical Geology, 2003, 202(3/4): 479-506.

[83]

White A F, Schulz M S, Stonestrom D A, . Chemical Weathering of a Marine Terrace Chronosequence, Santa Cruz, California. Part II: Solute Profiles, Gradients and the Comparisons of Contemporary and Long-Term Weathering Rates. Geochimica et Cosmochimica Acta, 2009, 73(10): 2769-2803.

[84]

White A F, Schulz M S, Vivit D V, . Chemical Weathering of a Marine Terrace Chronosequence, Santa Cruz, California I: Interpreting Rates and Controls Based on Soil Concentration-Depth Profiles. Geochimica et Cosmochimica Acta, 2008, 72(1): 36-68.

[85]

Zhou J, Bing H J, Wu Y H, . Rapid Weathering Processes of a 120-Year-Old Chronosequence in the Hailuogou Glacier Foreland, Mt. Gongga, SW China. Geoderma, 2016, 267: 78-91.

[86]

Zielinski R A, Peterman Z E, Stuckless J S, . The Chemical and Isotopic Record of Rock-Water Interaction in the Sherman Granite, Wyoming and Colorado. Contributions to Mineralogy and Petrology, 1982, 78(3): 209-219.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/